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Beauty is an eternal pursuit of all people. Wound repair, anti-aging, inhibiting

hyperpigmentation and hair loss are the main demands for medical aesthetics.

At present, the repair and remodeling of human body shape and function in

medical aesthetics are often achieved by injection of antioxidants, hyaluronic

acid and botulinum toxin, stem cell therapy. However, there are some

challenges, such as difficulty controlling the injection dose, abnormal local

contour, increased foreign body sensation, and the risk of tumor occurrence

and deformity induced by stem cell therapy. Exosomes are tiny vesicles

secreted by cells, which are rich in proteins, nucleic acids and other

bioactive molecules. They have the characteristics of low immunogenicity

and strong tissue penetration, making them ideal for applications in medical

aesthetics. However, their low yield, strong heterogeneity, and long-term

preservation still hinder their application in medical aesthetics. In this review,

we summarize the mechanism of action, administration methods, engineered

production and preservation technologies for exosomes in medical aesthetics

in recent years to further promote their research and industrialization in the field

of medical aesthetics.
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1 Introduction

Beauty is the eternal pursuit of all people. Wound repair (Prasai et al., 2022), anti-

aging (Hu et al., 2019), inhibiting hyperpigmentation (Wang et al., 2021) and inhibiting

hair loss (Yang G. et al., 2019) are the main demands for medical aesthetics. Medical

aesthetics is a perfect combination of regenerative medicine and improvement of one’s

looks (Edmonds, 2013). It repairs, replaces, or regenerates human cells and tissues by

using regenerative medicine technologies such as cells, natural or artificial scaffold

materials and growth factors (Lee J. et al., 2020; Huang et al., 2021). At the same

time, it is used in medical aesthetics to achieve the repair, remodeling and improvement of

human appearance, shape and function, so as to achieve the harmony and improvement
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of aesthetics, medicine, shape and function of the human body

(Martínez-González et al., 2019; Xiong et al., 2021).

At present, in the field of medical aesthetics, anti-oxidants

such as vitamin C (Odrobinska et al., 2020) and resveratrol

(Ratz-Lyko and Arct, 2019), hyaluronic acid (Shekhter et al.,

2019; Gazitaeva et al., 2021) and botulinum toxin (Naik, 2021)

are often injected to remove wrinkles, reduce color spots and

promote wound healing. However, there are still many

challenges in aesthetics, for example, it is difficult to

control the dose of anti-oxidant injection (Shekhter et al.,

2019; Gazitaeva et al., 2021). In clinical practice, fat

transplantation is often used in medical aesthetics, but it

may lead abnormal local contour shape and to increase

foreign body sensation (Yan et al., 2021). Subsequently,

stem cell therapy was gradually applied to regenerative

medicine due to its pluripotency, self-renewal and ability to

promote the secretion of regenerative cytokines (Johari et al.,

2019; Li W. et al., 2022), but stem cell therapy may induce the

risk of tumorigenesis and malformation (Trounson and

McDonald, 2015). Moreover, exosomes are nano vesicles

secreted by cells, which belong to one kind of extracellular

vesicles and play an important role in intercellular

communication (Mehryab et al., 2020). Compared with

drugs, plant/herbal extracts and bioactive molecules,

exosomes have the advantages of low immunogenicity,

good biocompatibility, targeting specificity and strong

tissue permeability (Ha et al., 2016; Liang et al., 2021; Rao

et al., 2021). They are often used as drug delivery vehicles and

can play a role in medical aesthetics (Li M. et al., 2020). Here,

we summarize the mechanism of action, administration

methods, engineered production, separation, purification

and presser-vation methods of exosomes in the field of

medical aesthetics in recent years with a view to furthering

the research and industrialization process of exosomes in the

field of medical aesthetics.

2 Biological properties of exosomes

Exosomes have unique physicochemical properties, such

as their ability to pass through tissue barriers, mononuclear

phagocytic cell systems and certain targeting properties

(Marcus and Leonard, 2013) when carrying drugs, and they

are often used as therapeutic drug delivery carriers in medical

aesthetics. For example, exosomes’ lipid bilayer structure can

prolong drug circulation time in vivo, escaping the

elimination by mononuclear phagocytosis system,

increasing the local drug concentration, and effectively

controlling the drug release (Nam et al., 2020). Compared

with traditional nanomaterials, exosomes have good

biocompatibility, degradability, low toxicity, and low

immunogenicity, so they are more suitable as drug delivery

carriers (O’Brien et al., 2020).

2.1 Structure and composition of
exosomes

The lipid bilayer membrane structure of exosomes protects

the abundant proteins, nucleic acids, microRNAs (miRNAs),

cholesterol and sphingomyelin in the membrane from being

degraded (Pegtel and Gould, 2019; Li X. et al., 2020; Foo et al.,

2021; Gurunathan et al., 2021) (Figure 1). A common

cytoplasmic protein in exosomes is the RAB protein, a

member of the guanylate triphosphatase (GTPases) family,

which regulates the fusion of exosome membranes with

recipient cells (An et al., 2021). In addition to RAB proteins,

exosomes are rich in annexins that have exosomal membrane

exchange and fusion effects (Tan et al., 2017; Keklikoglou et al.,

2019). Exosomes membrane is rich in tetraspanins involved in

exosomes transport family (CD63, CD81, and CD9) (Barranco

et al., 2019) and heat shock protein family (HSP60, HSP70, and

HSP90) (Regimbeau et al., 2021). Exosomes transport cargoes

through the lipid bilayer membrane, and can deliver active

ingredients (including proteins, nucleic acids, and lipids) from

parent cells to recipient cells (Villarroya-Beltri et al., 2014; van

Niel et al., 2018), and they can selectively enter target cells (Li M.

et al., 2020) by homing to target tissues. Their active ingredients

are delivered to the target cells’ cytoplasm, thereby changing

recipient cells’ physiological state (Tkach and Thery, 2016).

2.2 Biogenesis

In the aspect of medical aesthetics, the research of exosomes

biogenesis is crucial to the engineering transformation of

exosomes and the production of larger quantities. A short

overview of exosomes biogenesis can be stated as the inward

movement of cytoplasmic membranes results in wrapping

around extracellular entities and various membrane proteins

forming the early sorting endosomes (ESEs), the ESEs fuses

with other ESEs to form late sorting exosomes (LSEs). The

LSEs develop into multivesicular bodies (MVBs). MVBs

contain many intraluminal vesicles (ILVs) that are released

into exosomes. After its formation, the MVBs can either be

degraded by fusion with lysosomes or fuse with the plasma

membrane with ILVs in it, the final exosomes (Borges et al.,

2013; Matic et al., 2020; Ras-Carmona et al., 2021).

Because the biogenesis of exosomes is mainly divided into

two ways: dependent on the transport of necessary endosome

sorting complex (ESCRT) pathway and independent of ESCRT.

Therefore, we herein discuss some ESCRT-dependent and

ESCRT-independent mechanisms to increase exosome

production (Figure 2). These following methods provide

important ideas on engineering preparation of related

exosomes in the field of later medical aesthetics and improve

their production rate. ESCRT-dependent pathways: Genetic

manipulation of gene generation pathways to overexpress
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activating genes for exosome biogenesis and downregulating key

regulatory genes involved in exosome transport, storage,

secretion, or recycling. In most of these pathways, genes have

a directly positive effect on exosome production (Jafari et al.,

2020). For example, Wang et al. found that overexpression of

HSP20 attenuated diabetes-induced cardiac damage. In addition,

the elevation of HSP20 promoted the secretion of exosomes by

directly interacting with Tsg101, a promoter of the exosome

biogenesis pathway, and the production of exosomes was

increased by 1.8-fold compared with the control group (Wang

et al., 2016) (Table 1 for details).

ESCRT independent pathway involves steps such as cell

culture manipulation via altering the media, use of specific

drugs and harsh conditions to accelerate the production of

exosomes. For example, Ban et al. isolated exosomes from cell

culture media at pH 4, 7 and 11, and found that the

concentration of exosomes protein and RNA in

pH 4 medium was 5 times higher than that in

pH 7 medium (Ban et al., 2015). However, one study

showed that storage at pH 4 would reduce the

concentration of exosomes and increased the absorption of

exosomes by cells (Cheng et al., 2019), but at present many

reports still use pH 7 buffer to preserve exosomes (Salimu

et al., 2017; Petersen et al., 2018). Therefore, the influence of

pH value on exosomes still needs to be further explored in the

future. Together, we can broaden, change or improve the

therapeutic capacity of exosomes by studying or

engineering their structure, biogenesis, and properties

(Table 2 for detailed data).

3 The regulatory mechanism of
exosomes in medical aesthetics

At present, several studies have proved that miRNAs (Zhai

et al., 2020), related active factors (Yoshida et al., 2019) in

exosomes mediate wound repair (Li andWu, 2022), anti-aging

(Han et al., 2022), inhibiting hyperpigmentation (Liu et al.,

2019), and inhibiting hair loss (Bae and Kim, 2021) and other

related signaling pathways, regulating inflammatory factors

interleukin-1β (IL-1β) (Li Z. Q. et al., 2020), matrix

metalloproteinase 1 (MMP-1) (Liu et al., 2021), matrix

metalloproteinase 3 (MMP-3) (Wang et al., 2017), collagen

1 (COL1A) and collagen 3 (COL3A) (Qi et al., 2020)

expression of related genes, thus playing a role in medical

aesthetics. For example, mesenchymal stem cell exosomes

(MSCs-EXOs) encapsulated miR-223 regulate the

polarization of macrophage M2 by targeting pknox1 and

reducing the related inflammatory factor IL-10,TNF-α
expression, thereby controlling the inflammatory response

(He et al., 2019). Below we specifically explore exosomes’

role and regulatory mechanism in wound repair, anti-aging,

inhibiting hyperpigmentation, and inhibiting hair loss

(Table 3 for details).

FIGURE 1
Overview of the composition of exosomes and the role of exosomes in medical aesthetics.
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FIGURE 2
The established theory of exosomes biogenesis indicates different pathways distinguished as ESCRT-dependent and ESCRT-independent (Shi
et al., 2021).

TABLE 1 Take parts as an example: Gene manipulation promotes exosome release.

Modification Cell line Outcome Mechanism of action References

Overexpression of HSP20 Cardiomyocyte Increased generation of exosomes Direct interaction of Hsp20 with
Tsg101

Wang et al.
(2016)

Overexpression of LMP1 HEK293 Separation EV increased 2–4 times CD63-mediated exosomes
LMP1 release

Hurwitz et al.
(2017)

Overexpression of TSPAN6 HEK293 Exosome release increased by 60% Interaction with syntenic Guix et al. (2017)

Cortactin overexpression SCC61 Exosome secretion increased
1.5–2 times

Interaction with Arp2/3 complex
and F-actin

Sinha et al.
(2016)

Overexpression of the tetraspanin CD9 Standard HEK-AAV
producer

The production of exosomes
increased 3.75 times

Not mentioned Schiller et al.
(2018)

Combined expression of STEAP3, syndecan-4 HEK293 The production of exosomes
increased 15–40 times

Not mentioned Kojima et al.
(2018)

miR-126-3p-overexpressing combined with
chitosan wound dressing

SMSCs Increased exosome release Not mentioned Tao et al. (2017)
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TABLE 2 Physical or chemical methods promote the release of exosomes.

Condition Cell line Outcome Mechanism of action References

Acidic pH HEK293 Production of exosomes increased 5 times Acidic pH could increase the stability of
exosomes

Ban et al. (2015)

Oxidative stress ARPE-19 The release of the exosomes containing the
VEGR receptor was increased 4 times

RPE cells release higher amounts of exosomes
when they are under oxidative stress

Atienzar-Aroca
et al. (2016)

Glucose starvation H9C2 Increased exosome release Not mentioned Garcia et al. (2015)

Hypoxia MCF7, SKBR3, and
MDA-MB-231

Exosome release increases 1.4-2 times Activation of hypoxic signaling by
dimethyloxalylglycine, elevation of miR-210

King et al. (2012)

Incubation with IgM CLL Secretion of exosomes increases by about 2 times,
expression of miR-150 and miR-155 in exosomes

B cell receptor activation by a-immunoglobulin
(Ig)M induces exosome secretion

Yeh et al. (2015)

Cyclophosphamide LBC T cell Exosomes increased by 61% Not mentioned Cocozza et al.
(2019)

Recombinant
WNT5A

Melanoma cells Increased exosome release Ca2+-dependent release of exosomes containing
IL-6, VEGF and MMP2 proteins

Ekström et al.
(2014)

Extracellular Ca2+ SJSA-1, Hs578T The production of tumor microvesicles and the
formation of tumor globules increased about
3 times

Not mentioned Crawford et al.
(2010)

TABLE 3 Role of exosomes in medical aesthetics.

Source Mechanism of action Function References

Mesenchymal stem cell exosomes miR-223 coated by MSCS-Exos regulates M2 polarization of
macrophages by targeting Pknox1

Wound healing He et al. (2019)

Keratinocyte-derived exosomes Carrying miR-330-5p inhibits melanin production by targeting TYR Hyperpigmentation Liu et al. (2019)

Exosomes derived from human
amniotic stem cells

miR-181a-5p and miR-199a, respectively, inhibit melanin production
by reducing MITF expression

Hyperpigmentation Wang et al. (2021)

Milk exosomes miR-2478 directly targets rap1a via the Akt-GSK3 β pathway as a
regulator of Melanin production, which reduces Melanin content in
melanocytes and inhibits Melanin formation

Hyperpigmentation Bae and Kim, (2021), Han et al.
(2022)

Fat Mesenchymal stem cell exosomes By regulating miR-22, Wnt/β-catenin signal pathway and TNF-α signal
pathway, the proliferation and migration of DPCs and expression of
ALP, versican and Alpha-smooth muscle actin (α-SMA) proteins were
promoted

Control hair loss Nilforoushzadeh et al. (2020),
Li et al. (2022b)

Human-induced potent stem cell-
derived exosomes

It decreased the activity of SA-β-Gal and inhibited the expression of
P53 and P21 in HDFs

Anti-aging Lee et al. (2020a)

Blood exosomes NAMPT carried in exosomes increases the biosynthesis of NAD Anti-aging Yoshida et al. (2019)

Endothelial progenitor cells exosomes Activation of ERK1/2 signal pathway enhances the ability of human
endothelium to proliferate, migrate and become tube

Wound healing Zhang et al. (2016b)

Exosomes derived from human
umbilical Mesenchymal stem cell

Activation of ERK pathway significantly inhibits Melanin Synthesis
during MITF degradation

Hyperpigmentation Kim et al. (2015)

Exosomes derived from Dermal Papilla
cells

Down-regulation of relevant hair follicle inhibitory signal proteins by
genes involved in the key pathways of β-catenin, WNT, BMP2 and
BMP4 promotes the proliferation of hair follicle stem cells

Control hair loss Zhou et al. (2018), Zhang et al.
(2022)

Exosomes derived from Human
Mesenchymal stem cell

Activation of hair inductivity of DPCs, AKT phosphorylation, Bcl-2 in
Dermal Papilla, and regulation of proliferation of DPCs

Control hair loss Rajendran et al. (2017),
Taghiabadi et al. (2020)

Fat Mesenchymal stem cell exosomes Inhibit the over-expression of MMP-1, MMP-2, MMP-3 and MMP-9
induced by UV irradiation, and enhance the expression of Collagen
type I and III and Elastin

Anti-aging Choi et al. (2019)

Wheat exosomes The gene expression related to wound healing was enhanced and gene
modification coordinated the formation of blood vessel

Wound healing Sahin et al. (2019)
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3.1 The role and mechanism of exosomes
in wound repair

Skin wound repair is a complex dynamic physiological

process (Jackson et al., 2012; Ogawa, 2017). Studies have

shown that exosomes play a role in promoting blood

coagulation (Zifkos et al., 2021), reducing inflammation

(Chamberlain et al., 2021), accelerating tissue remodeling (Das

et al., 2019), and inhibiting scar formation (An et al., 2021) by

mediating wound repair-related signaling pathways such as

MAPK (Gartz et al., 2018) and ERK (Geng et al., 2021).

Exosomes can be vital in wound repair.

3.1.1 Procoagulant
At present, the mechanism and physiological relevance of

exosomes for procoagulant effect in wound repair is still unclear.

However, exosomes are rich in active components and have

unique physicochemical properties, such as passing through

tissue barriers, which are beneficial in reducing blood

coagulation in human blood. Studies have found that salivary

exosomes can activate TF and coagulation factor VII-mediated

coagulation in human plasma, helping coagulation, thereby

reducing the risk of blood loss and pathogens entering the

blood, thus contributing to innate immunity and host defense

(Berckmans et al., 2011).

3.1.2 Reduction of inflammation
Skin damage causes an inflammatory response, and there

are also changes in the secretion of inflammatory factors

(Marofi et al., 2021). Exosomes can reduce the time from

wound repair inflammation to remodeling by reducing the

expression of related inflammatory factors. Studies have

shown that mesenchymal stem cell exosomes (MSCs-

EXOs) encapsulated miR-223 regulate the macrophage

M2 polarization by targeting pknox1 and reduces the

related inflammatory factor IL-10, NF-α expression,

FIGURE 3
Utlization of MSCs derived exosomes for wound healing. (A)Depicts the light field photographs of cutaneous wounds post treatment with PBS,
BMMSCs, BMMSC-ex, and BM/siRab27a. (B) Percentage of thewound closure on day 3–day 12 in reference to the day 0wounds (n= 4). (C) qRT-PCR
analysis of IL-10 and TNF-α inmacrophages after being coculturedwith BMMSC-, BMMSC/siRab27a-, or BMMSC-derived exosomes (n= 3). (D) qRT-
PCR analysis of miR-223 in macrophages cocultured with BMMSCs, BMMSC-ex, and BM/siRab27a (He et al., 2019).
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thereby controlling the inflammatory response (He et al.,

2019) (Figure 3). These results indicate that exosomes can

accelerate the transition of wound repair from the

inflammatory phase to the remodeling phase, thereby

promoting wound repair.

3.1.3 Accelerated tissue remodeling
Exosomes accelerate tissue remodeling by activating

endothelial cells and fibroblasts, promoting pro-angiogenesis

and initiating extracellular matrix deposition (Zhang J. et al.,

2015; Shabbir et al., 2015; Zhao et al., 2018; Ma et al., 2019; Xu

FIGURE 4
Exosomes can accelerate tissue remodeling. (A)General view of wounds treated with PBS or EPC exosomes of different concentrations on the
4th, 7th, and 14th days after trauma. (B) The rate of wound-closure on different days in wounds receiving different treatments. (C) On the 14th day
after trauma, the wounds were treated with PBS or EPC exosomes of different concentrations and then stained with H&E (Zhang J. et al., 2016). (D)
Representative photographs showing the effect of conditioned medium from days 0 to 6 on the transwell migration and tubule formation of
HMEC-1 (Tao et al., 2017). (E, F) Control cells and 200 μg/ml wheat exosome (WE)–treated cells were incubated (37°C, 5% CO2) in DMEM medium
supplemented with 10% FBS. Average number of branches formed by both control and treated cells (Sahin et al., 2019).
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et al., 2020). In mouse wound experiments, Zhang J. et al. (2016)

injected exosomes derived from endothelial progenitor cells

(EPCs) into a mouse abdomen and found that the EPCs-Exos

can enhance human microvessels by activating the ERK1/

2 signaling pathway. The ability of endothelial cells to

proliferate, migrate and form tubes, thereby improving the

rate of skin wound healing in diabetic rats, enhancing

neovascularization, epidermal and collagen tissue regeneration,

and then accelerating tissue remodeling (Figures 4A–C). It can be

seen that synovial MSCs-EXOs can function in promoting the

formation of blood vessels by activating protein kinase B (AKT)

and extracellular signal-regulated kinase (ERK) pathways.

Endothelial cells proliferate and promote fibroblast migration

to the wound site and capillary angiogenesis through HSP70 and

FIGURE 5
Exosomes inhibits the formation of scar by inhibiting the excessive proliferation of tissues. (A) Representative images of immunohistochemical
staining of PCNA and β-catenin in each group. Scale bar = 100 μm (Zhang B. et al., 2016). (B, C) Effect of miR-29a-modified hADSCs-exo on the
scratch healing of HSFBs. (D, E) Effect of miR-29a overexpression and knockdown on the expression level of TGF-β2 in HSFBs (Yuan et al., 2021).
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HSP90, accelerating tissue remodeling (Tao et al., 2017)

(Figure 4D).

Additionally, it has been discovered that wheat-derived

nano-vesicles can encourage human endothelial cell

proliferation and migration and to improve the synthesis of

endothelial cell tubular structures. Moreover, increased

expression of Collagen 1 contributes to tissue remodeling

(Sahin et al., 2019) (Figures 4E, F). The study of wheat-

derived nano-vesicles provides a new solution for wound

repair and lays a foundation for future research on wound

repair mechanisms and the development of wound repair-

related drugs.

3.1.4 Inhibition of scarring
Exosomes inhibit scarring by inhibiting tissue

hyperproliferation. The study found that human mesenchymal

stem cell-derived exosomes (hucMSC-Exos) promoted wound

repair by activating the Hippo signaling pathway in a rat skin

burn model, inhibiting excessive tissue proliferation and scar

formation (Zhang B. et al., 2016) (Figure 5A). HucMSC-Exos also

inhibits scarring by inhibiting the activation of TGF-β/
SMAD2 pathway in fibroblasts by transporting miR-29a

(Chen et al., 2019; Yuan et al., 2021) (Figures 5B–E). All of

the above proves that exosomes are important medium for

information transfer between cells and cytokines, which can

be used as a new hope for cell-free therapy for non-invasive

wound repair.

3.2 The role and mechanism of exosomes
in anti-aging

The essence of human aging involves the aging of cells. Cell

aging is due to the accumulation of damage that induces the

activation of cell cycle inhibition pathways. Cells permanently

exit the cell proliferation cycle, and cellular aging has permanent

cell cycle arrest, reduction of NAD+, apoptosis resistance, aging-

associated inflammatory cytokine secretion, and altered

metabolic and epigenetic signatures (Kirkland and Tchkonia,

2017). Exosomes often contain biologically active proteins and

genetic information, all of which play an important role in

delaying cell aging (Liao et al., 2021), such as inhibiting the

synthesis of related aging factor-β-galactosidase (SA-β-Gal) (Kim
et al., 2021), and inhibiting skin photoaging (Gao et al., 2021).

3.2.1 Exosomes delay cell senescence
Exosomes can delay cell senescence by inhibiting the

synthesis of related senescence factor-β-galactosidase (SA-β-
Gal) (Kim et al., 2021) and promoting the synthesis of

nicotinamide adenine dinucleotide (NAD+) (McReynolds

et al., 2021). Studies have shown that human-induced potent

stem cell-derived exosomes (iPSC-EXO) can delay fibroblast

senescence by inhibiting the synthesis of senescence-related

factor-β-galactosidase (SA-β-Gal). Lee et al. (2020a) fabricated

cell-engineered nanovesicles (CENVs) by continuously

extruding iPSCs through membrane filters. They discovered

that IPSC-CENVs had characteristics with IPSC-EXOs, and

iPSC-CNEVs greatly diminished fibroblasts (HDFs),

senescence-associated-galactosidase (SA-Gal), expression of

p53 and p21, and SA-Gal activity, thus delaying cellular

senescence (Figures 6A–C). These results suggest that the

iPSC-CENVs can serve as an excellent surrogate for iPSC-

EXO, and as well as a source of drugs for treating skin aging.

In addition, multiple studies have confirmed that NAD+ is a

major player in cellular aging. Studies have shown that NAD+

levels in the circulatory system are decreased significantly with

age in mice and humans during aging (Clement et al., 2019;

McReynolds et al., 2020). Aging and muscle contraction enhance

NAD+ utilization, and under normal physiological conditions,

NAD+ depletion occurs primarily through salvage pathways

catalyzed by nicotinamide phosphoribosyl transferase

(NAMPT). Studies by Yoshida et al. (2019) have shown that

blood transfusion into neonatal mice can prolong the lifespan

and improve the health status of aging mice, mainly because

NAMPT carried in blood exosomes increases the biosynthesis of

NAD+, thereby prolonging the lifespan of mice (Figures 6D–F).

These results indicate that NAMPT carried by blood exosomes

has the effect of delaying cell senescence, laying a foundation for

the development of later anti-aging drugs.

3.2.2 Exosomes inhibit skin photoaging
Skin photoaging is the most direct manifestation of human

aging, mainly due to the abnormal up-regulation of matrix

metalloproteinases (MMPs) after UV exposure, resulting in

obvious skin wrinkles (Mazini et al., 2021). The researchers

used a needle-free syringe to inject human dermal fibroblasts

(HDFs) exosomes cultured in three-dimensional spheroids (3D-

HDF-XOs) and monolayers (2D-HDF-XOs) in vitro and in a

nude mouse model for photoaging, respectively. They found that

the 3D-HDF-XOs cultured exosomes caused a significant

decrease in MMP-1 expression and increased type I

procollagen expression, mainly by down-regulating tumor

necrosis factor-α (TNF-α) and up-regulating transforming

growth factor-β (TGF-β) (Figure 7A). These findings imply

that exosomes produced from 3D grown HDF spheroids have

anti-aging capabilities and can also be used to treat and prevent

the aging process of skin (Hu et al., 2019) (Figure 7B). In

addition, human induced pluripotent stem cell exosomes

(iPSCs-Exo) can inhibit UVB radiation-induced HDFs damage

and matrix metalloproteinase 1/3 (MMP-1/3) overexpression.

Increased expression level of collagen type I in photoaged HDFs

was investigated (Oh et al., 2018) (Figure 7C). Exosomes (EXO)

from human adipose-derived stem cells (HASCs) were also

studied for their impact on photodamaged human dermal

fibroblasts (HDFs), and it was discovered that adipose-derived

mesenchymal stem cell exosomes (ADSCs-Exo) significantly
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inhibited UV-irradiation-induced overexpression of MMP-1, 2,

3, and 9, and enhanced I (from 119.6% ± 35.8% to 262.6% ±

54.1%), type III (from 61.2% ± 4.5% to 80.8% ± 2.7%) collagen

and elastin expression (Choi et al., 2019) (Figures 7D, E).

These above results revealed that exosomes have the potential

to be combined with cosmetics or drugs. However, the

transformational application of exosome anti-aging effect is

still in its infancy, and there is no clear clinical report, but its

huge application potential deserves attention.

3.3 The role and mechanism for exosomes
in hyperpigmentation

Asian women have long had a penchant for inhibiting

hyperpigmentation (Hakozaki et al., 2002; Boo, 2022). Since

skin color is mainly determined by the content and

distribution of skin pigments, melanin is the most important

determinant. Therefore, inhibiting melanin formation is one of

the main ways to reduce skin pigmentation (Hwang and Hong,

2017). Human skin, mucous membranes, the retina, the pia

mater, the gallbladder and ovary are all rich in melanin.

Exosomes may have the effect of reducing hyperpigmentation

by inhibiting the production of melanin (Lo Cicero et al., 2015).

Studies have shown that miR-181a-5p and miR-199a in

human amniotic stem cell-derived exosomes promote

melanosome degradation in skin hyperpigmentation by

inhibiting melanogenesis by reducing MITF expression,

respectively. Exosomes derived from human umbilical cord

mesenchymal stem cells are activated via the ERK pathway

(Figures 8A–C), which significantly inhibits melanin synthesis

during the degradation of MITF gene (Kim et al., 2015) (Figures

8D–F). In addition, miR-2478 in milk exosomes directly targets

rap1a via the Akt-GSK3β pathway as a regulator of melanin

FIGURE 6
Exosomes delay cell senescence. (A) Schematic of the preparation of extracellular vesicles (EVs), and cell-engineered nanovesicles (CENVs)
from human induced pluripotent stem cells (iPSCs). (B, C) Comparison of human iPSC-derived CENV and EV (Lee H. et al., 2020). (D) Mechanism
Diagram of eNAMPT Containing Extracellular Vesicles Delaying Cell Aging. (E) Fluorescent images of primary hypothalamic neurons following the
incubation with BODIPY-labeled EVs. (F) Kaplan-Meier curves and representative images of aged female mice injected with vehicle or EVs
isolated from 4- to 12-month-old mice (n = 11–12). The mouse images were taken after 3 months of treatment (Yoshida et al., 2019).
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production, reducing melanin content in melanocytes and

thereby inhibiting the formation of melanin (Bae and Kim,

2021; Han et al., 2022) (Figures 8G, H). These results indicate

that the exosomes can be used as an effective cosmetic ingredient

to inhibit hyperpigmentation, and have great application

potential in regulating skin pigment. The huge application

potential of exosomes is expected to boost for the

commercialization of exosomes based cosmeceutical products

in the future.

3.4 The role and mechanism of exosomes
in inhibiting hair loss

Hair loss is affected by various internal and external factors

such as genetics, endocrine function (thyroid organ disease,

changes in sex hormone levels), immune system diseases,

malnutrition, drugs, mental state and natural aging. The above

factors can affect the hair cycle (HC), reducing the activity and

repair ability of hair follicle stem cells (Gentile and Garcovich,

2019). Dermal papilla cells (DPCs) are located in the hair bulb at

the bottom of the hair follicle, surrounded by the dermal sheath

and hair matrix cells, and are considered a unique type of

mesenchymal stem cells. DPCs serve as signaling centers in

the hair follicle (HF) and play an important role in regulating

hair growth, formation, and circulation. Exosomes can inhibit

hair loss by inducing HF regeneration by promoting the

proliferation of DPCs (Kost et al., 2022).

Studies have shown that the DPCs-Exos affect the hair follicle

signaling pathway through the miRNAs it carries. By acting on

key pathway genes such as β-catenin, Wnt, BMP2, BMP4, and

downregulating related hair follicle inhibitory signaling proteins,

the DPCs-Exos promotes hair follicle stem cell proliferation, hair

follicle regeneration, and hair follicle formation. The telogen

phase transitions to the growth phase (Zhou et al., 2018; Zhang

et al., 2022). ADSC-Exos significantly promoted the proliferation

and migration of DPCs by regulating miR-22, Wnt/β-catenin
signaling pathway, and TNF-α signaling pathway, and promoting

FIGURE 7
The mechanism for exosome regulation of MMPs. (A) Western blot of dorsal skin of different groups. (B) Masson’s Trichrome staining and
Corresponding H & E staining. scale bar: 290 μm (Hu et al., 2019). (C) The mRNA expression levels of MMP-1, MMP-3 and collagen type I were
quantified by quantitative real-time RT-PCR (Oh et al., 2018). (D, E) The proliferation of HDFs in different groups was measured by CCK-8 method.
Gene expression in HDFs with or without HASC-derived EVs treatment after UV irradiation (Choi et al., 2019).
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the expression of ALP, versican, and α-SMA proteins while

maintaining their hair-inducibility, finally having a positive

effect on hair follicle regeneration (Nilforoushzadeh et al.,

2020). Human mesenchymal stem cell-derived exosomes

activate the hair-inducibility of DPCs by stimulating Akt

phosphorylation, and increasing Bcl-2 in the dermal papilla,

thereby regulating the proliferation of DPCs and transforming

hair follicles from dormant to anagen phase (Rajendran et al.,

2017; Taghiabadi et al., 2020) (Figures 9A, B).

Recently, Kou et al. proposed for the first time that

apoEVs play an important role in maintaining stem cell

homeostasis in vivo. They found that exogenous apoEVs

are metabolized through skin and hair follicles in a wave-

like manner. At the same time, exogenous apoEVs can

activate skin and hair follicle mesenchymal stem cells

through the Wnt/β-catenin pathway to promote hair

regeneration (Ma et al., 2023) (Figures 9C–F). All of the

above implies that the exosomes may be a promising cell-free

FIGURE 8
Exosomes inhibit melanin production. (A–C)Western blot was used to analyze the expression of related proteins. Melanin content in cells under
different conditions.Western blot analysis of protein expression levels of tyrosinase, TRP1, p-ERK1/2 and ERK1/2 in cells. (D–F)Western blot analysis
was used to detect the level of MITF under different conditions (Kim et al., 2015). (G, H) Melanin content of UV irradiated cells under different
conditions (Han et al., 2022).
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therapeutic strategy for immune-mediated hair loss (Li Y.

et al., 2022). However, exosome-based treatments for hair

loss are still in their infancy, and more robust clinical studies

are needed to better evaluate their mechanisms of action,

efficacy, safety, benefits, and limitations (Egger et al., 2020).

3.5 Clinical trials

At present, in the aspect of medical aesthetics, only 3 studies

are based on the clinical trial registration related to wound

healing of exosomes (17 November 2022) (Li et al., 2021a).

The clinical trials of exosomes in anti-aging, inhibition of

hyperpigmentation and hair loss have not yet been reported.

Previous studies have found that exosomes from serum can

accelerate the healing of skin wounds in BALB/c mice (Li

et al., 2021b; Lee et al., 2021). Therefore, a trial is currently

under way, in which autologous exosomes from plasma will be

applied to the ulcer of the participants every day for 28 days.

Then evaluate the healing of the skin wound according to the

length, width and depth of the wound (ClinicalTrials.gov:

NCT02565264). In addition, there is also a single arm pilot

study. All patients were recruited on an outpatient basis.

Debridement and photography were performed on the

patient’s wound surface, and the wound area was measured.

Then provide fat tissue exocrine dressing for patients in the

intervention group. Exosomes were mixed with sterile hydrogel

and applied directly to the wound surface, and the wound was

covered with inert protective dressing. Patients who meet the

inclusion and exclusion criteria at the end of the induction period

will receive treatment twice a week for 4 weeks or until recovery

(ClinicalTrials.gov: NCT05475418). To conduct a pilot clinical

FIGURE 9
Hair regeneration induced by exosomes. (A, B) Take skin photos on days 0, 4, 11, 15, 18, 21, 24, and 28. Then, the hair regeneration area
quantized by imageJ software is expressed in percentage (Rajendran et al., 2017). (C, D) Representative photos of mice showing skin color darkness
and hair regrowth at 0, 7, 10 and 14 days post-injection. The level of pigmentation was quantified by the intensity of the darkness of the back skin in
the same area. (E) Immunofluore-scent images show that GFP-ApoEV (green) were engulfed by skinMSCs (SMSCs) (1 and 2), as indicated by co-
staining with CD105 at 7 days post-injection. (F) Western blotting shows Wnt/β-catenin signaling is activated and DKK1 expression is decreased in
SMSCs and hair follicle MSCs (HF-MSCs) from MRL/lpr mice after apoEVs injection (Ma et al., 2023).
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trial in diabetes patients with chronic skin ulcer (CCU), and

evaluate the effect of the exosomes of mesenchymal stem cells

(MSC) on the healing and regeneration ability of personalized

nutritional supplementation (ClinicalTrials.gov: NCT05243368).

Furthermore, there are currently five registered clinical trials

based on plant exosome-like nanovesicles, including those from

grape, lemon, aloe and ginger (ClinicalTrials.gov: NCT01668849;

NCT04698447; NCT03493984; NCT01294072; NCT04879810),

which are respectively studies on reducing the incidence rate of

oral mucositis, cardiovascular risk factors, polycystic ovary

syndrome, colon cancer and inflammatory bowel disease.

Although there is no clinical trial related to medical aesthetics

for these plant exosome-like nanovesicles, it has been reported

that the plant exosome-like nanovesicles of grapefruit (Savcı

et al., 2021), lemon (Manconi et al., 2016) and aloe (Zeng

et al., 2021; Kim and Park, 2022) have potential application

value in wound healing and anti-aging, and are expected to

conduct clinical trials in the future (Leggio et al., 2020; Dad et al.,

2021).

4 Administration of exosomes in
medical aesthetics

At present, exosomes are mainly used for medical aesthetics

research through topical application and local injection (Yari

et al., 2022). Topical application (Li L. et al., 2020) can be directly

applied locally to the skin or by means of microneedles (Zhang K.

et al., 2020) or transdermal drug delivery (Shang et al., 2022) to

increase the transdermal effect of exosomes. Local injection

works mainly through subcutaneous injection (Cao et al.,

2021). At present, there is no unified standard to judge which

exosomes administration mode has the most obvious effect. The

effect of exosomes from different sources may vary depending on

the mode of administration. Therefore, which management

mode to adopt is still a question and the focus of our discussion.

4.1 Topical application

Topical application can be applied to different areas

according to different effects, and the dosage can be freely

controlled. Xu et al. (2020) constructed a mouse skin injury

model and found that both exosomes and miRNA-221-3p can

promote wound healing in normal and diabetic mice by smearing

endothelial progenitor cell exosomes or miRNA-221-

3p. However, transdermal drug delivery can directly deliver

active ingredients under the epidermis, opening the stratum

corneum barrier, greatly improving the skin’s absorption rate

of active substances, and reducing the loss of active ingredients. A

detachable microneedle device-mediated drug delivery system

for extended distribution of hair follicle stem cell activators was

designed by Yang et al. (2017). The combination of this

microneedle technology with small molecule medication

UK5099 and exosomes produced from mesenchymal stem

cells (MSCs) increased treatment efficacy at a lower dose and

encouraged pigmentation and hair regrowth within six days

through two rounds of treatment, according to their findings.

In addition, this microneedle-based transdermal delivery

technique demonstrated greater efficacy compared to topical

UK5099 distribution and subcutaneous exosome injection.

Additionally, human amniotic mesenchymal stem cells

(hAMSCs) exosomes and hair nanoparticles were coupled

with soluble microneedle patches (MNs) (HNP). They

discovered that HNP-modified microneedle patches (HMNs)

can efficiently permeate the stratum corneum and help deliver

hAMSC exosomes into the dermis to stimulate proliferation of

hair follicle stem cells and promote hair regeneration by causing

the hair follicle to transition from telogen to anagen (Hong et al.,

2021). Compared to direct administration, these combination

transdermal treatments are more effective and safer (Shang et al.,

2022). Some regenerative medicine companies, such as BENEV

and Kimera Labs, have developed health care products involving

exosomes for skin damage, anti-aging, pigment regulation and

inhibition of hair loss. These products have been approved by the

US Food and Drug Administration (FDA) (Peña-Juárez et al.,

2022).

4.2 Local injection

Local injection has advantages such as less adverse

reactions and simple operation. Here we mainly discuss

subcutaneous injection. Han et al. (2021) in vitro studies

on mice revealed that subcutaneous injection of DF-Exo

markedly expedited the healing of diabetic skin lesions by

boosting re-epithelialization, collagen deposition, skin cell

proliferation, and angiogenesis. In addition, according to

Shin et al., subcutaneous injection of adipose-derived

mesenchymal stem cell exosomes significantly decreased

trans epidermal water loss, increased stratum corneum (SC)

hydration, and significantly decreased the expression of

inflammatory cytokines like IL-4, etc., promoting wound

healing (Shin et al., 2020). In addition, exosomes are often

incorporated into hydrogels to function. Some researchers

assembled MSC-derived exosomes in chitosan/silk hydrogels

(Shiekh et al., 2020) and self-healing antibacterial polypeptide

hydrogels (Wang C. et al., 2019), and found that exosome-

assembled hydrogels can promote wound healing in diabetic

patients and can also be placed directly in or near the target

area, the dose of exosomes is more concentrated and more

targeted (Riau et al., 2019). It has been shown to have the

ability to rapidly heal wounds and is more effective than single

exosome therapy, and reduces scarring (Wang C. et al., 2019;

Wang M. et al., 2019). These results suggest that the exosomes

can potentially be used as therapeutic agents to repair skin
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damage. However, there are still many problems, such as

standardization of research methods, clarification of the

mechanism of action, and validity of application (Mehryab

et al., 2020). There are a few clinical studies on exosomes in

medical aesthetics. At present, it is still in the primary stage of

research (Jing et al., 2018; Hade et al., 2021) and has not been

approved by the US Food and Drug Administration (FDA).

The above results indicate that exosomes can play a role in

the field of medical aesthetics through different delivery methods.

However, in terms of medical aesthetics, we recommend

transdermal drug delivery. Compared to the direct application

of exosomes, transdermal drug delivery can penetrate the cuticle,

greatly improve the skin’s absorption rate of effective substances,

and reduce the effective loss of ingredients. Compared to the

injection of exosomes, transdermal drug delivery is more

convenient, has fewer side effects, and is safer. It has huge

application potential in the future medical beauty industry

(Yang et al., 2021).

5 Exosome engineering production
and preservation

The application of exosomes in medical aesthetics is

inseparable from their large-scale production and

preservation. The unique heterogeneity and other

characteristics of exosomes hinder their engineering

production. Secondly, different separation, purification and

preservation methods have a greater impact on the yield and

active components of exosomes. Therefore, it is crucial to adopt

appropriate engineered production, separation and purification

techniques and preservation methods of exosomes. Next, we

specifically discuss the engineering production, separation,

purification technology, and preservation methods of

exosomes in recent years, laying the foundation for their

application in medical aesthetics in the later period.

5.1 Exosome engineering production
technology

At present, many companies and researchers are working

hard to develop engineered exosomes for medical aesthetics

(Gimona et al., 2017). To improve cell-to-cell communication,

Cha et al. (2018) established the usage of a polyethylene glycol

(PEG) hydrogel for cell aggregation and MSC spheroid

formation. In addition, they employed a programmable

dynamic culture method in the planned microwells, which

increased EV production 100 times more than 2D cell culture.

Cao et al. (2020) utilized a three-dimensional (3D) culture system

of hollow fiber bioreactors to produce MSC-exos and evaluated

the therapeutic effect of 3D-exosomes (3D-exos) on acute kidney

injury (AKI). They discovered that compared to 2D culture, 3D

culture did not significantly change the surface indicators of

MSCs or their morphology, size, or exosome labelling. Tubular

epithelial cells (TECs) absorbed the 3D-exos more effectively,

leading to better anti-inflammatory efficacy and increased TEC

viability in vitro. The total exosome yield was also raised by

19.4 times in the 3D culture system, and the hollow fiber

technology provides benefits, including exosome

concentration, immunity to serum exosome contamination,

and a reduction in other contaminants. Based on the

advantages of 3D culture technology, Enze Kangtai Company

has successfully built an engineered exosome research and

transformation platform with independent intellectual

property rights - ModiExoTM. Based on mature site-directed

insertion technology and backbone plasmids, the ModiExo™
platform can rapidly construct exosome scaffold protein-

engineered cell lines and combine with 3D microcarrier

culture technology to efficiently and stably mass-produce

projects targeting specific organs or loading specific proteins/

RNAs exosomes. The establishment of this platform has

promoted the rapid development of exosome clinical

transformation.

In addition, by using MYC gene to genetically modify human

embryonic stem cell mesenchymal stem cells, we have created

immortal cell lines that can permanently produce exosomes

without batch renewal. However, this approach has not been

well received by other researchers, and a biological function

investigation alone cannot vouch that the exosomes’

characteristics are unaffected by cell transformation.

Therefore, additional research is necessary to ascertain the

potential alterations in exosome content (Chen et al., 2011).

Therefore, the generation of exosomes by manipulating cellular

sources or conditions requires further characterization of their

composition and provides ideas for the development of new

methods for exosomes in medical aesthetic applications.

However, the engineering application of exosomes still faces

many challenges in medical aesthetics. At each step of large-scale

exosomes production should be according to good

manufacturing practice protocol (GMP). Further exploration

is still needed in this field because systems based on GMP

protocols and adequate quality control, and quality

certification processes are still essential (Lener et al., 2015).

5.2 Engineering isolation and purification
of exosomes

The putative use of exosomes in medical cosmetics has been

continuously explored as exosome research has progressed.

Exosome enrichment and reproducible isolation will make it

easier to establish their biological activities (Zhang Y. et al., 2020).

Conversely, exosomes collection and purification are

complicated because exosomes from diverse sources fluctuate

in size, composition, and function (Kalluri and LeBleu, 2020).
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Consequently, one of the current biggest issues is how to

efficiently enrich exosomes, which is vital for the engineering

production of exosomes. For varied uses and goals, different

separation techniques are frequently used. At present,

ultracentrifugation technology is one of the frequently

employed exosome separation techniques in medical cosmetic

applications (Livshits et al., 2015), polymer precipitation

technology (Domenis et al., 2017), immunoaffinity capture

technology (He et al., 2017) and asymmetric flow field-flow

fractionation technology (Yang et al., 2017; Willms et al.,

2018). However, the equipment required for

ultracentrifugation technology is expensive and complex to

operate. The polymer precipitation technology may be

contaminated with other proteins and the purity of exosomes

is low. The reagents required for immunoaffinity capture

technology are expensive, and the isolated exosomes may lose

activity. Asymmetric flow field-flow fractionation technology

requires large sample size and low yield, which is easily

limited in medical cosmetic applications (Yang X. X. et al.,

2019; Alzhrani et al., 2021) (Table 4 for details)

Secondly, the research progress of exosomes in medical

aesthetics is hindered to a certain extent by the heterogeneity

of their application preparation process, and the purification

efficiency of different separation methods is significantly

different (Hettich et al., 2020). It is said that, size-based

separation techniques, such as gravity size exclusion

chromatography (SEC), are a faster purification method with

higher purification efficiency and can obtain high-purity and

intact exosomes (Lobb et al., 2015; Nordin et al., 2015; Mol et al.,

2017), which are favored by many researchers. Size exclusion

chromatography (SEC) was employed by Vaswani et al. (2017) to

concentrate milk-derived exosomes from extracellular carriers

(EVs) that could be enriched in about 30 min, and exosomes

produced by SEC yield (3 × 1012 particles/ml) was higher that

density gradient centrifugation (7 × 1010 particles/ml). However,

there may be contamination of microvesicles in it.

Chen et al. (2021) invented an exosome detection method via

ultra-fast separation system (EXODUS) (Figures 10A, B).

EXODUS is based on the creation of negative pressure

switching technology (NPO) and NPO-HO technology that

simultaneously generates high and low-frequency vibration

(HO) on nanomembranes and devices. Negative pressure

oscillation and membrane vibration activated by double-

coupled harmonic oscillators were used to ultra-effectively

purify exosomes. This approach can quickly finish exosome

separation in less than 10 min, compared to existing

separation and purifying techniques. Exosomes isolated by

EXODUS had the highest signal intensities from all chosen

TABLE 4 Isolation of exosomes.

Isolation technique Isolation principle Advantages Disadvantages

Ultracentrifugation
Techniques

Precipitate and isolate exosomes based on
density and size

Separation of gold standard exosomes, and
the most widely used

Time consumption, high cost, structural
damage

Ultrafiltration technique Filtration with different relative molecular
mass

Low cost, high enrichment efficiency and
exosomes activity are not affected

Low purity and non-specific bind-ing of
exosomes and reduced recovery through
exosomes and ultrafiltration membranes

Size-based isolation
techniques

This technique mainly refers to ultrafiltration
and size exclusion chromatography. Both are
exclusively based on the differences in
diameter between exosomes and other
components

The structure and integrity of exosomes
separated from SEC are usually not affected
by shear force

It usually requires a long running time, which
limits its application in processing a variety of
biological samples

Polymer precipitation Collect exosomes under centrifugation by
reducing the solubility of exosomes, such
as PEG

Relatively easy to operate with short analysis
time and is suitable for processing large
doses of samples

Expensive and other non-exosomal
contaminants proteins and polymeric
materials may co-precipitate, resulting in low
purity exosomes

Immunoaffinity capture
techniques

Based on specific binding of antibodies and
ligands to separate desired substances from
heterogeneous mixtures

This method is applicable to the isolation of
exosomes with the same membrane protein
expression, as well as the qualitative and
quantitative determination of exosomes

The reagent cost is high. This method is not
suitable for the mass separation of exosomes,
and the separated exosomes may lose their
activity

Microfluidics-derived chip
isolation techniques

It is a microscale separation technique based
on difference between biochemical and
physical properties of exosomes, such as
density, size and immunoaffinity

Fast sample processing, low cost and
portability

Low yield, high sensitivity, only for diagnostic
purposes, and a large amount of raw
materials are needed to increase the output

Flow field-flow
fractionation (FlFFF)

Particle size separation of sample
components is realized by increasing the
molecular weight or hydrodynamic diameter

Once the lipid target or marker is
determined, you can use FlFFF ESI MS/MS
for top-down lipid analysis to directly
analyze the lipids in the exosomes without
collecting the exosomes for lipid extraction

The lack of adequate sample validation has its
limitations
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exosomal proteins and the lowest signal intensities from chosen

protein contaminants, demonstrating the benefits of exosome

isolation and purification. Concerning a variety of sample types,

sample quantities, and exosome concentrations, the EXODUS

system enables reproducible procedures, and reproducible

results.

In addition, tangential flow filtration (TFF) is also considered

to be an ideal method for engineering the isolation of exosomes

(Reiner et al., 2017; Ha et al., 2020a; Ha et al., 2020b; Yi et al.,

2020). The TFF system complies with Good Manufacturing

Practice (GMP), which is a method for separating exosomes,

concentrated proteins or viruses from a large number of cell

culture media. (Potter et al., 2014; Haraszti et al., 2018) (Figures

10C, D). Lee et al. (2020c) used TFF technique to isolate

exosomes from adipose tissue-derived adipose-derived

mesenchymal stem cells on a large scale with positive effects

on kidney injury. Several studies have proved that the yield and

purity of TFF-isolated exosomes are comparable to methods

based on size exclusion chromatography (Reiner et al., 2017;

Busatto et al., 2018; Haraszti et al., 2018; Ha et al., 2020a; Ha et al.,

2020b; Yi et al., 2020) and have been gradually applied in the field

of medical aesthetics.

There is no absolute best separation method for exosomes,

and their separation effect is closely related to downstream

applications and scientific issues, but high recovery and high

specificity are two recognized basic requirements. In addition, the

complexity of the operating procedure, extraction cost, biological

activity, and throughput still need to be considered. Due to the

limitations of the separation principle, the current exosome

separation and purification technology has bottlenecks such as

contamination with other components and exosome aggregation.

Therefore, selecting appropriate methods for exosome isolation

from different sources according to their characteristics is crucial.

5.3 Preservation of exosomes

Exosome utilisation in medical aesthetics depends on a

suitable storage environment. It is an essential step to keep

the biological activity stable throughout preservation. Exosome

function may be more affected by various storage conditions. It is

crucial to maintain a specific storage state. Currently,

cryopreservation, freeze-drying and spray-drying are the three

main preservation procedures used.

FIGURE 10
Exosomes separation device. (A, B) A photograph of the EXODUS station and Schematic diagram of the control module for the resonator (Chen
et al., 2021). (C, D) Separation of exosomes by tangential flow filtration. Exosomes were enriched from the culture supernatant by tangential flow
filtration with a 500 kDa cut-off filter cartridge (Haraszti et al., 2018).
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5.3.1 Cryopreservation
Cryopreservation is currently the storage technique that is

most frequently employed (Mahdavinezhad et al., 2022). In

order to preserve the functional stability of biological

microparticles, a storage method known cryopreservation

lowers the temperature below that needed for biochemical

reactions. It is typically used at temperatures of

4°C, −20°C, −80°C, and −196°C (Saadeldin et al., 2020). But

this way of preservation is prone to “frost burn”. The term

“frozen injury” used here refers to ice crystal development

inside biological particles and the imbalance of osmosis that

occurs during freezing. In addition, repeated freezing and

thawing changes the biological properties, content and marker

composition of exosome surface molecules (Maroto et al.,

2017). Therefore, an appropriate concentration of antifreeze is

often selectively added to prolong shelf life. The most effective

disaccharide antifreeze for exosomes is trehalose, which is

mentioned as the best alternative (Nakanishi et al., 2020).

Trehalose and other membrane stabilisers have been used to

store labile proteins, vaccines, liposomes, and cryopreserve

tissues and stem cells, thus it makes sense to utilise them to

keep exosomes stable (Zhang X. G. et al., 2015; Bosch et al.,

2016; Shinde et al., 2019). Budgude et al. added 25 mM

trehalose to exosomes in PBS at −80°C and found that

these cryopreserved exosomes could be taken up by

hematopoietic stem cells as efficiently as freshly isolated

exosomes and that trehalose was as effective forfreshly

isolated exosomes (Budgude et al., 2021). The addition will

not alter the form of the exosomes and can successfully

prevent exosome aggregation during the freeze-drying

process, boosting stability.

5.3.2 Freeze drying
For heat-sensitive molecules such as proteins, peptides,

vaccines, colloidal carriers, vesicles, and viruses, freeze-drying

is currently thought to be the most dependable technique

(Hansen et al., 2015; Muramatsu et al., 2022). In order to

meet storage needs, a process known as freeze-drying pre-

cools materials containing moisture to below freezing point,

causes them to solidify. The ice is then directly sublimated in

a vacuum and removed as water vapour Wang et al. (2022) have

developed an inhaled, room temperature-stable virus-like

particle (exosome) vaccine as a promising COVID-19 vaccine

candidate. The new coronavirus vaccine consists of a

recombinant new coronavirus receptor-binding domain (RBD)

that binds to pulmonary exosomes, which can enhance the

retention of RBD in the respiratory tract and lungs, and the

new coronavirus vaccine can be lyophilized at room temperature

for more than 3 months. However, the freezing and dehydration

pressures generated during freeze-drying may cause the

molecular structure of biomolecules to be destroyed.

Therefore, it is also necessary to selectively add antifreeze,

such as trehalose, to protect biological materials.

5.3.3 Spray drying
Simple, quick, repeatable, and scalable drying methods

include spray drying (Arpagaus et al., 2018). Compared to

freeze-drying, spray drying is a continuous process, which

does not require freezing steps, and can directly transform

various liquids into solid particles with adjustable size,

distribution, shape, porosity, density and chemical

composition. Powders that have been sprayed-dried are of a

high calibre, often have a reducedmoisture content, and are more

stable (Arpagaus et al., 2018; Kusuma et al., 2018). However,

spray drying is currently mainly concentrated in food

applications and capsule and tablet applications, and the

preservation and transportation of exosomes have not yet

been covered. If it can be applied to the field of medical

aesthetics in the future, it will solve a major problem in the

preservation and transportation of exosomes.

Overall, research is underway to determine the ideal storage

conditions for exosomes in medical aesthetics. Exosomes should

be kept at −80°C for long-term storage and at 4°C for short-term

storage. For preparation and transportation of exosome-related

drugs, a freeze-drying method is used, but cryoprotectants such

as trehalose, albumin., need to be added during the freezing

process to reduce the loss of extracellular vesicles during

separation and preservation (Bosch et al., 2016).

6 Conclusion and future perceptive

This paper discusses the regulatory mechanism of exosomes

in wound repair, anti-aging, inhibition of hyperpigmentation and

hair loss, also summarizes the engineering production

technology, administration methods, and preservation

methods for exosomes in medical beauty, with further

explanations of exosomes applications in the medical

aesthetics industry.

As a new type of tissue engineering material, exosomes have

been gradually applied in the medical aesthetics industry.

However, the research on the function of exosomes is still in

the early stage, and there is an urgent need to conduct

comprehensive research on the functions of exosomes in

absorption, distribution, and metabolism (Cheng et al., 2020).

Second, the uncertainty about the accuracy and content of

components in exosomes (Lee et al., 2012), such as miRNA,

proteins, and lipids, their high cost for separation procedures,

and low purity of exosomes have always been problems in their

application in medical aesthetics (Golchin, 2021).

The widespread use of exosomes still faces several difficulties,

which we must continue to investigate in the future from various

angles. First, stem cell exosomes are the main exosomes used in

medical aesthetics. However, more research is needed to

determine the significant usefulness of a wide range of

exosomes, including plant nanovesicles and microbial

nanovesicles. The route and dose of administration of
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exosomes will also affect the biological distribution pattern

(Wiklander et al., 2015). As a drug delivery carrier, how to

achieve local administration suitable for home use and how to

improve its efficacy is still a problem worth exploring. Secondly,

the small automatic preparation device has a huge application

market at home, and how to develop a small automatic exosome

extraction device suitable for home use is also a direction worth

exploring. At the same time, large-scale preparation technology

combined with long-term effective preservation technology is

also a direction worthy of research.

Exosomes still face many challenges in clinical practice. In clinical

practice and medical aesthetics, allogeneic exosomes are often applied

to individuals. Although allogeneic exosomes can induce T cell

proinflammatory allogeneic immune response in vitro and in vivo,

due to different donors, the drug formation ability of allogeneic

exosomes needs further study. (Marino et al., 2016; Lu et al.,

2019). How to improve the curative effect of exosomes is the key

point worth studying. In addition, due to heterogeneity and donor

age, sex, body mass index, drug use, race and other factors that affect

the level of exosomes (Witwer et al., 2013).With the in-depth study of

engineered exosomes, the selection of engineered cells for different

indications, production standards and standardization of clinical trials

are also an important direction.
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