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Review Article

Exosomal therapy—a new frontier in regenerative medicine
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Abstract: The recent advances in translational and nanomedicine have paved the way for developing the 
targeted drug delivery system at a greater pace among global researchers. On par with these technologies, 
exosomes act as a potential portal for cell-free drug delivery systems as these are bestowed with the native 
characteristics of the parent cell of origin. Exosomes, called extracellular vesicles (EcVs), are present in 
almost all cells, tissues, and body fluids. They help in intercellular signaling and maintains tissue homeostasis 
in the disease pathobiology. Researchers have characterized 9,769 proteins, 2,838 miRNAs, 3,408 mRNAs, 
and 1,116 lipids being present in exosomal cargo. The separation of exosomes from cells, tissues, and 
body fluids follow different patterned kinetics. Exosomes interact with the recipient cells through their 
surface receptor molecules and ligands and internalize within recipient cells through micropinocytosis 
and phagocytosis. Advancing technologies in regenerative medicine have facilitated the researchers to 
isolate exosomes from mesenchymal stem cells (MSCs) as these cells are blessed with supreme regenerative 
potentiality in targeting a disease. Exosomal cargo is a key player in establishing the diagnosis and executing 
therapeutic role whilst regulating a disease process. Various in vitro studies have exhibited the safety, 
efficacy, and therapeutic potentiality of exosomes in various cancers, neurodegenerative, cardiovascular, and 
orthopedic diseases. This article throws light on the composition, therapeutic role, and regulatory potentials 
of exosomes with the widening of the horizon in the field of regenerative medicine.
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Introduction

The contemporary developments in the field of translational 
medicine include the development of targeted drug 
delivery systems for harnessing the full potentiality and 

utilizing the therapeutic products effectively by overcoming 
the limitations of the existing methods to address the 
pathogenesis of a disease. In that context, various polymer-
based nano delivery systems have been developed (1). 
Utilizing extracellular vesicles (EcVs) as a drug delivery 
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tool has been given special attention due to their naïve 
characteristics derived from the parent or host cells (2-4). 
Despite the normal cellular homeostasis, EcVs play a major 
role in intervening in the pathobiology of disease processes 
through the intercellular signaling cascade (5-9).

Based on the size, exosomes are subcategorized under 
EcVs, which are endosome derived lipid bi-layered 
spherical vesicles of 40–150 nm in size (2,10-12). Almost 
all cells, tissues, and body fluids [plasma, urine, saliva, tears, 
gastrointestinal (GI) secretions, semen, and breast milk] 
secrete exosomes (13-16). Exosomal cargo carries an array 
of micro-biomolecules that consists of proteins, lipids, 
RNA, and DNA from the secreting parent cells (2,17-19). 
Moreover, the characteristics and behavior of the exosomes 
closely relate to the parent cell of origin (20-22). On 
account of their appropriate size and property along with 
their evident role in numerous pathobiological processes, 
the potential of exosomal therapy in the management of 
various neurodegenerative disorders, infectious diseases, 
musculoskeletal disorders, and cardiovascular disorders is 
overwhelming. This has enabled the researchers to target 
the disease process at a cellular level by using natural 
engineered defense mechanisms. 

Characterization of exosomes 

The composition of an exosome vesicle (EV) includes 
proteins, RNA, DNA, and other substances. Currently, 
9,769 proteins, 2,838 miRNAs, 3,408 mRNAs, and 1,116 
lipids have been described in their composition (23). Of 
these components, the exosomal proteins differ based on 
the nature of the primitive cells or tissues (24). Proteins 
like membrane transport and fusion proteins, chaperones, 
adhesion molecules, MHCs, cytoskeletal proteins, and 
lipid-related proteins are major exosomal proteins (24-28).  
With a pre-existing knowledge of the functioning of these 
proteins, ALG-2-interacting protein X (ALIX), heat 
shock protein 70 (HSP 70), tumor susceptibility gene 101 
(TSG101), and tetraspanins (CD9, CD 63, CD 81, and 
CD 82) have been identified with a higher concentration 
in exosomes (29,30). Moreover, they serve as a biomarker 
for exosomal identification as shown in Figure 1 (31). 
Exosomes are also rich in lipid layering molecules like 
glycosylphosphatidylinositol-anchored protein (LBPA) 
and flotillin (32,33). Apart from the metabolic enzymes 
and signal transduction molecules such as G protein and 
protein kinases, exosomes contain mRNAs, miRNAs, 
non-coding RNAs (ncRNAs), and mitochondrial DNA in 

their composition (34,35). Noteworthy, the first types of 
nucleic acids identified in the exosomes were mRNA and  
miRNA (36,37). 

Being a nanoscale vesicular component in complex 
body fluids, it is challenging to procure exosomes of high-
yield and fineness (38). However, their isolation and 
characterization is an essential prerequisite to establish their 
therapeutic potential with a better understanding of their 
physiology. Exosomes are derived from the cell culture 
supernatants or plasma with their identification based on 
the physical and morphological characteristics (39,40). 
Although separation can be made by several methods like 
ultracentrifugation, ultrafiltration, gradient ultracentrifugation, 
precipitation, size-exclusion chromatography, immune-
affinity capture, mass spectrometric immunoassay, magnetic-
activated cell sorting, and microfluidics-based techniques 
with each having their advantages and disadvantages (41-45)  
Ultracentrifugation is the most commonly used method for 
isolating exosomes. The complex proteins in the exosomes 
are analyzed by processes like western blot, flow cytometry, 
and mass spectrometry (46). Additionally, sample analysis 
with high precision fluorescence is a possibility in the 
nanoparticle tracking method (47). Homogeneity without 
exosome isolation is possible with the resistance pulse 
sensing method (48). Profiling the miRNA content of the 
exosomes was made with next-generation sequencing, 
microarray processing, and RT-PCR. Confirmation of the 
isolated samples can be done by electron microscopy (49). 
Disparate use of various methods of isolation, confirmation, 
quantification, and analysis used by the researchers 
with their own set of advantages and disadvantages, it 
brings added heterogeneity in their analysis which needs 
standardization. 

Cellular physiology of exosomes

The formation of exosomes involves the invagination of 
the plasma membrane and the formation of intracellular 
multivesicular bodies with intraluminal vesicles. This 
endocytic pathway of the donor cell is followed by the 
transport of the transmembrane and intra-vesicular proteins 
from the Golgi complex resulting in the formation of early 
endosomes. After maturation and differentiation, they 
get transformed into late endosomes (50-53). They are 
degraded by fusing with lysosomes or plasma membrane 
or autophagosomes to release the intraluminal vesicles 
as exosomes (measuring 40–150 nm diameter) into the 
extracellular milieu as shown in Figure 2 (5,32,54).
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Exosomes interact with the recipient cells through 
their surface receptor molecules and ligands. Some of 
the exosomes persist on the cell membranes of the donor 
cells after secretion while the rest of them interacts with 
the recipient cells (54-59). Internalization of exosomes 
occurs via membrane integration process mediated 
by raft or caveolae or clathrin dependent endocytosis. 
Micropinocytosis and phagocytosis have also been described 
as a method of internalization of the exosomes by recipient 
cells. This physiological integration process on the targeted 
recipient cells has been considered to have therapeutic 
potential as a targeted delivery system for effectively 
executing biological functions (60-64). Yet, the exosomal 
components in specific accounting for cell-type or organ 
specificity remain unclear (65).

Diagnostic role of exosomes 

Exosomes are the key players of the intercellular 
communication portal and thereby owe the capability 
of determining the progression of a disease. Studies are 
emerging in the diagnostic and therapeutic facets of 
exosomes for various systemic pathologies. The detection 
of substances (intracellular and extracellular) carried by 
these nanoparticles and promoting their immune capture 
with surface proteins aid in the diagnosis of pathological 
processes. The spectrum of diseases in which exosomes 
play a key role in diagnosis includes cerebrovascular disease 
(66,67), diseases involving the central nervous system and 
neoplasm (8,68-70) along with disease involving kidney, 
liver, and lungs (70-72). Let us consider the scenario of 
cancer. Exosomes can protect the rapid degradation of 

Figure 1 Basic structure of mesenchymal stem cell exosome depicting the surface and core proteins along with the key immune and growth 
factors. 
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nucleic acids and remain highly stable in plasma (73). 
With an exosome-based liquid biopsy, direct detection 
of the circulating tumor cells and their DNA or cell-free 
RNA from body fluids like blood, saliva can be made. This 
DNA or RNA (including mRNA, miRNA, ncRNA) from 
serum exosomes can be used for the detection of cancer-
related mutations making them a promising biomarker in 
cancer diagnosis (74-77). Various studies have identified 
proteins and RNAs rich in cancer-derived exosomes which 
act as biomarkers that can be used in the detection and 
prognosticating treatment response (78-85).

Therapeutic role of exosomes

Exosomes possess a higher therapeutic potential for various 
disease spectra due to their ability for intracellular shuttling. 
Nanomedicine technologies have given rise to explore 

the usage of pathogenic importance of exosomal particles 
in various diseases. The targeted drug delivery system in 
nanomedicine focus on the sustained release of exosomes 
for exerting the biological activity in the targeted site. 
Exosomes are used as vectors or carrier molecules to elicit a 
biological response. 

Under given physiological circumstances, exosomes 
demonstrate very low immunogenicity and the potential 
to circumvent the physiological blood-brain-barrier (86).  
With the help of a stable lipid bilayer, the cargoes loaded 
in the exosomal vesicles are guarded against the action of 
native immune cells and digestive enzymes. The engineered 
exosomal vesicles deliver the cargoes loaded to them to the 
site of action through various mechanisms of endocytosis or 
membrane fusion as shown in Figures 3 and 4 (87,88). EVs are 
derived from various cell types and tissues. On delivery to 
specific diseased tissue, under specific conditions, EV elicits 

Figure 2 Physiology of formation and degradation of exosomes. ECM, extracellular matrix.
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Figure 3 Methods of uptake of exosomes by the target cells. 
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tissue regeneration and homeostasis (89). Mesenchymal 
stromal cell-derived EV show cellular viability, trophicity, 
anti-inflammatory, immunomodulatory and therapeutic 
effects (90,91). They support neoangiogenesis and cellular 
proliferation (2,92-95). Exosomes demonstrate the homing 
effect of the parental cell type (2,96). 

The superiority of the exosomal cargos compared to the 
stem cells on clinical and therapeutic potential is noted by 

(I) Lack of inherent risk associated with any cell-based 
therapies including stem cells;

(II) Lack of replicating potential and the risk of 
malignant transformation; 

(III) Lack of immunogenic response towards infections 
and cancers; 

(IV) Targeted action at the site of interest (2,97). 
The above-mentioned versatility of EVs enhances their 

intracellular signaling capabilities and their movement 
across cellular membranes to restore micromolecular 
homeostasis. Apart from these advantages, exosomes also 
offer neuroprotection and neuroplasticity by shuttling across 
the blood-brain barrier in neurodegenerative diseases (98).  
A total of 77 clinical trials have been registered among the 
global researchers in various pathologies. Out of 77 trials, 
11 clinical trials have been completed and have proved the 
positive diagnostic and therapeutic effects of exosome-
based treatment in various cancers, neurodegenerative and 
hematological diseases (99).

Sources of isolation of exosomes

The exosomes are also called intraluminal vesicles and 
are found in various tissues and body fluids (5-7). The 
exosomes derived from mesenchymal stem cells (MSCs) 
are of prime importance due to the greater therapeutic and 
regenerative potential as shown in Figure 4. Due to the 
challenges faced in isolating exosomes from various body 
fluids, regenerative and translational medicine experts used 
MSC-derived exosomes for treating various disorders (2). 
MSCs derived exosomal cargo exhibit intracellular signaling 
and communications to targeted tissues. The key sources 
of exosomes derived from the MSCs include bone marrow, 
adipose tissue, placental cells, umbilical cells, endometrial 
fluid, and amniotic fluid (2,100).

Exosomes of MSC origin have cell surface markers such 
as CD 29, CD 44, and CD 73 embedded in them (100). 
They play a vital role in the biomechanisms involved in the 
repair and regeneration, bioenergetics, immunoregulation, 
intracellular communication, and tissue metabolism (2,101). 

In a proteomic analysis, a total of 730 protein molecules in 
bone marrow MSC derived exosomes were isolated (102). 
Some researchers found the existence of transcription 
signaling factors in exosomal cargoes (103). Amniotic fluid 
exosomes are the most preferred exosomes for clinical 
applications than bone marrow-derived exosomes (104).

Routes of delivery of exosomes

The different state of the art approaches to deliver the 
exosomes to their site of action and their shortcomings were 
analyzed and presented with their challenges encountered in 
them. The most common route is intravenous (IV) despite 
its clearance in the liver and the kidney is rapid in this 
method (105). This method was widely used for conditions 
involving orthopedic, neoplastic, and cardiovascular 
pathologies (106). Intramuscular (IM) has been primarily 
used in neuromuscular and musculoskeletal conditions 
while subcutaneous (SC) route in aesthetic and cosmetic 
indications. The IM or SC route is chosen due to the ease 
of injectable area and the dosing volume (97). Intrathecal is 
the preferred route in neurodegenerative conditions such 
as Alzheimer’s, Parkinson’s, and Creutz-Feld Jakob’s disease 
(98,99). Local aerosol sprays are used in the management 
of wounds and ulcers (107,108). For hair growth and 
rejuvenation in age-related therapies, this is the preferred 
route (108,109). During the time of the coronavirus 
disease-2019 (COVID-19) pandemic, there have been 
interesting studies discussing the role of exosomal therapy 
as a promising therapeutic candidate (110).

Global regulatory requirements

With the growing therapeutic spectrum of exosomal 
therapy, the International Society for Extracellular Vesicles 
(ISEV) and the European Network on Microvesicles 
and Exosomes in Health and Disease (ME-HaD) have 
formulated certain guidelines to foster their clinical  
usage (10). The regulations elaborate on the standard 
operative protocols to be followed in the process of 
collection, processing, testing, quality control, and 
manufacturing of exosomes for clinical usage. With the help 
of these policies, the potential of the EVs can be utilized at 
appropriate standards for therapeutic usage. 

Any novel therapy or a drug being developed is 
dependent on the strategies to standardize the process 
to focus on validating the proposed technology. There 
are currently no Food and Drug Administration (FDA)-
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approved exosome products for human use in the USA 
(2,111). According to the FDA, exosomes are classified as a 
351 product that requires studies effectively showing safety 
and efficacy, along with the purity of the product and its 
potency in treating the condition (112). Therapies using 
the exosomes are under the Investigational New Drug 
(IND) developmental phase and need the approval of the 
regulatory agencies before initiating the clinical trial (2,113). 

The regulatory framework addresses the safety standards 
for microbial and viral contamination and demands GxP 
standards (GxP = good manufacturing/good laboratory/
good distribution/good clinical/good scientific practice 
or GMP/GLP/GDP/GCP/GSP) for the production and 
quality control of the corresponding therapeutics (114,115). 
It regulates the conduct of clinical trials (116). There 
remains an issue with the categorization of any emerging 
novel therapeutics for humans.

Pharmaceutical category of EV preparations

According to the Center for Biologics Evaluation and 
Research (CBER), the exosomes are regulated as biological 
products (117,118). Based on the individual types, the 
framework that was laid down for products in this category 
applies to the exosomes. For example, an anti-tumor 
vaccine that uses exosomes will be regulated under the 
regulations provided for therapeutic cancer vaccines (119). 
The functional moiety in EV-based therapy determines its 
medicinal type (2,120). 

Hence, ISEV categorizes EV-based therapy under  
biological medicines with the following properties.

(I) The therapeutics acquired from unmodified cells.
(II) Therapeutics acquired from genetically manipulated 

cells (without trans-gene).
(III) Therapies acquired from exosomes and gene-

modified cells with trans-gene classified as gene 
therapy products (GTP).

(IV) Native exosomal therapies; are used as drug-
delivery systems, used as carriers for the biological 
and chemical components, and are considered as 
biological medicine.

As the biological medicinal products include a span of 
various pharmaceuticals, these were classified as Advanced 
Therapy Medicinal Products (ATMP’s) in 2007 (2,120). 
It was further subgrouped to conventional biological 
medicinal products due to the biological properties, 
physicochemical and immunochemical properties (117,118). 
It includes somatic cell therapy, gene therapies, and tissue-

engineered products. 
ATMP’s therapeutics involve products that have been: 
(I) More than minimally manipulated such as cell 

expansions and cell cultures.
(II) Intended for non-homologous use. For example 

use of hematopoietic cells for orthopedics.
(III) Nucleated and viable cells are present in the 

product.
(IV) Products with therapeutically active trans-gene 

from genetically engineered cells are considered 
as ATMPs, independent of the presence of any 
nucleated, viable cell. 

(V) EV-based therapeutics classified as ATMP’s; are 
produced from human material by a manufacturing 
process comparable to the ATMP production. 

Safety profile, manufacturing & standardization

The mechanism of action (MoA) is essential for the clinical 
translation of therapeutics based on EVs (121). The critical 
part of this translation is the identification of “active 
substances”, their properties, and the essential quality 
controls in manufacturing a clinical-grade product (118). 
For phase I the hypothesis should be based on the proof 
of principle, reinstate the rationale based on the MoAs. 
Although uncertainties exist on the MoA of EV-based 
therapeutics on the target cells, with supportive animal 
models, EVs from human cells are not to be accounted as 
high risk in an IND (116). Commercializing a large scale 
manufacturing of EV based therapeutics requires a robust 
quality management system, technologically superior 
facility, and an updated technology complying with GxP 
(114,115). The endpoint of these investigational studies is 
to provide safety for the donor and the patient. The criteria 
for the therapeutic release of an investigational product 
is to determine efficacy based on the pre-IND studies for 
characterization (116). 

At this moment the EV’s do not have a standardized 
protocol for isolation and storage; and include homemade 
cocktails as protocols with no standardization for reagents, 
storage containers, and storage time for each desired EV-
based product (2,10,122).

Direction for future research

The scope of exosomal therapy among various other 
clinical fields remains untouched. With the global interest 
of the researchers towards harnessing the potential of 
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the exosomes, making EV based therapeutics a reality 
is not far from reach (10). The potential of EV based 
therapy is established in various orthopedic conditions, 
neurodegenerative disorders, auto-immune diseases, 
cardiovascular diseases, infectious diseases, and diagnosis 
of rare diseases including cancers (98,99,123). However, 
the current domain of research in EV based therapeutics 
involve developing diagnostic and therapeutic applications 
towards patient care. 

From the level of the circulating pool of EVs, early 
diagnosis of a complex disease could be made by using them 
as biomarkers in blood (74-82). Utilising the paracrine 
signaling property of the MSC-derived exosomes, repair, 
and regeneration of organs could be achieved (87-95). For 
use in most orthopedic conditions exosomes are deemed 
anti-inflammatory concerning their immunomodulatory 
potential (123). Understanding the role of exosomes 
in the disease processes have enabled us to propel our 
understanding of the disease and expand the scope of the 
therapies evolved out of them (124). As of now therapeutic 
applications of the EV-based therapies from defined cell 
sources based on their immunomodulatory capabilities 
include inflammatory disorders, degenerative disorders, 
vehicles of drug-delivery, anti-tumor therapies, and 
pathogen vaccination tool (98-102). Immunomodulatin of 
exosomes may be exerted by either immune-activation or 
suppression. This novel platform with the above-mentioned 
diverse potentials holds promise to develop vaccines with 

prolonged immunogenicity against infectious diseases or 
cancer (125,126). 

There is a paradigm shift brought down by the continual 
breakthroughs in research exploring the potential of the 
exosomes that have resulted in the development of novel 
therapeutic options that are reshaping the landscape of the 
global market from time to time. Despite being started as 
a subject of academic interest, exosomal therapy has now 
been transformed into a potential platform with immense 
promise for future therapeutics (127). This sowed the seeds 
for start-ups into exosome platforms with their proprietary 
technologies. Some of them are elaborated in Table 1. 
These companies are using patented technologies to tap the 
potential of exosomes. For example, the company Capricor 
Therapeutics developed an exosomal therapeutic technology 
from cardiosphere-derived cells (CDCs) called CAP-
2003 which is in the preclinical testing phase to explore 
the anti-inflammatory, pro-angiogenic, antiapoptotic, and 
antifibrotic effects associated with their parent CDCs. 
Additionally, the company is evaluating the role of CDC-
exosomes for the treatment of trauma-related injuries and 
conditions (135).

Conclusions

Exosomes play a natural role by enacting as a vehicle for 
the transfer of biological substances between cells and 
thereby renders a broader prospect to serve as a channel 

Table 1 Companies targeting on exosomal research and their potential products for commercial use

Company Exosomal source Exosomal product Exosomal potential

Capricor Therapeutics (128) Cardiosphere-derived 
cells (CDCs)

CAP-2003 
(preclinical testing)

Explore the anti-inflammatory, pro-angiogenic, antiapoptotic 
and antifibrotic effects associated with their parent CDCs

Kimera Labs (129) Placental MSC-derived 
exosome

XoGlo Tap into the potential for tissue repositioning, preventing 
healing-associated scarring

Exosomedx (130) Plasma or serum-
derived exosomes

ExoDx CLIA certified product to conduct advanced clinical testing

NanoSomiX (131) Brain-derived exosomes 
(BDEs)

ExoM and ExoC Biomarkers for prediction of potential nervous system 
disorders 

Evox Therapeutics (132) For rare metabolic and lysosomal storage diseases 
engaging endogenous and exogenous drug loading

Codiak Biosciences (133) Engineered therapeutic 
exosomes

Encompasses therapeutics for vaccines, anti-infectives, 
oncology, autoimmune and anti-inflammatory diseases

Aruna Biomedical (134) Neural derived 
exosomes

AB126 Murine thromboembolic models of stroke and its translation 
to clinical therapies

MSC, mesenchymal stem cell; CLIA, Clinical Laboratory Improvement Amendments.
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for delivering drugs of therapeutic interest. However, 
the intricate composition and uncertain functioning are 
inquisitive facets warranting further exploration. In view of 
making the exosome-based therapy a reality, more accurate, 
faster, cheaper, standardized, specific, and easier methods of 
their separation and purification have to evolve along with 
concrete adducing on its safety, feasibility, pharmacokinetic 
and pharmacodynamic characteristics through large scale 
prospective research studies. 
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