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Recent years, the immunosuppressive properties of mesenchymal stem cells (MSCs)
have been demonstrated in preclinical studies and trials of inflammatory and autoimmune
diseases. Emerging evidence indicates that the immunomodulatory effect of MSCs is
primarily attributed to the paracrine pathway. As one of the key paracrine effectors,
mesenchymal stem cell-derived exosomes (MSC-EXOs) are small vesicles 30-200 nm in
diameter that play an important role in cell-to-cell communication by carrying bioactive
substances from parental cells. Recent studies support the finding that MSC-EXOs have
an obvious inhibitory effect toward different effector cells involved in the innate and
adaptive immune response. Moreover, substantial progress has been made in the
treatment of autoimmune diseases, including multiple sclerosis (MS), systemic lupus
erythematosus (SLE), type-1 diabetes (T1DM), uveitis, rheumatoid arthritis (RA), and
inflammatory bowel disease (IBD). MSC-EXOs are capable of reproducing MSC function
and overcoming the limitations of traditional cell therapy. Therefore, using MSC-EXOs
instead of MSCs to treat autoimmune diseases appears to be a promising cell-free
treatment strategy. In this review, we review the current understanding of MSC-EXOs and
discuss the regulatory role of MSC-EXOs on immune cells and its potential application in
autoimmune diseases.
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1 INTRODUCTION

Mesenchymal stem cells (MSCs) are pluripotent stem cells with the capacity for self-renewal and
multidirectional differentiation into osteoblasts, chondrocytes, adipocytes, and other types of cells
(1, 2). MSCs are widely distributed in the body and have been isolated from a variety of tissues,
among which the bone marrow and subcutaneous fat are common cellular sources (3). The
International Committee established the recognition characteristics of human MSCs, including
under standard culture conditions to maintain adhesion appearance, expression of CD105, CD73,
and CD90 molecules, no expression of CD45, CD34, CD14, CD45, CD11b, CD79a, CD19, and
HLA-DR, with the ability to differentiate into osteoblasts, adipocytes, chondrocytes in vitro (4). In
addition to its strong differentiation capacity, MSCs also have immunomodulatory potential to
modulate innate and adaptive immune cells (5). Abundant evidence indicates that MSCs can act on
natural killer (NK) cells, dendritic cells (DCs), macrophages, B lymphocytes, and T lymphocytes via
org September 2021 | Volume 12 | Article 7491921
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inhibiting the activation, proliferation and differentiation into
effector cells (6–9). Following stimulation with inflammatory
factors, MSCs exhibit the properties of reducing the
inflammatory response, improving tissue repair, and avoiding
infection by secreting various immune regulatory factors (10). At
present, substantial evidence suggests that MSCs exert their
immunomodulatory function through paracrine pathway,
especially via exosomes (10, 11).

Extracellular vesicles(EVs) are a family of particles/vesicles
found in blood and body fluids. They are composed of
phospholipid bilayer and carry a variety of molecules that
serve as mediators for intercellular communication (12). In
1946, Chargaffaf et al. suspected the existence of EVs and
published the first study of EVs (13). It was not until 1967 that
Wolf et al. confirmed the existence of EVs with electron
microscopy (EM) (14). The term exosome (“ exo ”=
external,“ some ”= body) was introduced in the 1970s, and it
wasn’t until 1981 that the term“ exosome ”was first used by
Trams to refer to Evs (15). Shortly after Johnstone et al. described
multivesicular bodies (MVBs) and their 40-80nm exosomes in
1985 (16), differential centrifugation and ultracentrifugation
above 100,000 g were used to separate and distinguish the
smallest vesicles (17). With the increase in EVs (especially
exosomes) publications, most studies do not clearly distinguish
exosomes from other vesicles. To address this problem, in 2013,
the International Extracellular Vesicle Society (ISEV) proposed a
set of criteria for EV Science (18). In order to ensure normative
research, the Minimal Information of Studies of Extracellular
Vesicles (MISEV) was revised in 2018 to update knowledge in
the field (19).

Exosomes are spherical vesicles composed of lipid bilayer
membranes with a diameter of 40-200 nm, which contain
complex and abundant active substances such as proteins and
nucleic acids. Expression of exosome markers, proteins, nucleic
acids, and other bioactive molecules is related to the cell of origin
(20). There is increasing evidence that MSC-derived exosomes
(MSC-EXOs) play an important role in immune regulation.
MSC-EXOs are spherical vesicles secreted by MSCs that
contain many anti-inflammatory compounds and modulate the
immune response by interacting with immune effector cells (12).
In the treatment of autoimmune diseases, MSC-EXOs as a carrier
of cell-free therapy have attracted extensive attention, because
they not only carry most of the therapeutic effects of MSC itself,
but also reduce the concerns about the safety of injecting live
cells. MSC-EXOs has significant advantages over MSCs in
clinical treatment and may completely replace MSC therapy in
the future.
2 CHARACTERISTICS OF MESENCHYMAL
STEM CELL-DERIVED EXOSOMES

Both eukaryotic and prokaryotic cells release EVs, which are
regarded as a part of their normal physiology and acquired
abnormalities (20). EVs represent an important substance for
Frontiers in Immunology | www.frontiersin.org 2
intercellular communication. They participate in normal
physiological processes, as well as play a critical role in
disease occurrence and progression. Numerous experimental
and clinical studies have shown that the immunomodulatory
effects of MSCs can be primarily attributed to MSC-
derived extracellular vesicles (MSC-EVs) (21). Although the
classification of EVs is constantly evolving, it is generally
accepted that EVs are classified into three main categories
according to their size and biogenesis: apoptotic bodies (ABs),
microvesicles, and exosomes (22–24). ABs (greater than 1,000
nm in diameter) are comprised of relatively large fragments of
cells containing organelles derived from the cells undergoing
apoptosis, which are transferred to phagocytes (25, 26).
Microvesicles (100–1,000 nm in diameter) and exosomes (40–
200 nm in diameter) belong to EVs at the nano level.
Microvesicles, also known as ectosomes or microparticles, are
released into the extracellular environment after directly budding
or shedding from the plasma membrane (27). Exosomes
originate from the endosomal pathway. Extracellular material
fuses with early endosomes (ESEs) through membrane
invagination and endocytosis, and gradually matures and
develops into late endosomes (LSEs). The invagination of LSEs
leads to the formation of intraluminal vesicles (ILVs), and
multiple vesicles assemble to form MVBs, which fuse with the
cell membrane and are subsequently released (Figure 1) (20).
With regards to the delivery of exosome contents, exosomes can
be bound by target cells through multiple pathways, of which the
main mechanisms include endocytosis, ligand-receptor binding,
or direct binding (Figure 1) (28–31). Exosomes are formed by
budding through the endosome pathway and are wrapped in a
lipid bilayer, contents of which can be protected by the external
environment to maintain exosome integrity.

Exosomes contain a large number of proteins, lipids,
transcription factors, as well as DNA, mRNA, and miRNA (32,
33). Exosome membranes contain lipid raft structures composed
of cholesterol, spingomyosin, and ceramide and the tetraspanin
protein family (CD63, CD81, and CD9) as an exosome marker
(34). Exosomes also contain other common proteins, including
MVB biogenesis proteins (Alix, TSG101, and ESCRT Complex),
membrane transporter and fusion proteins (RAB protein,
GTPases, and annexins), heat shock proteins (HSP60, 70, and
90), lipid related proteins, and phospholipases (35). Notably,
MSC-EXOs express not only common surface markers such as
CD81 and CD9, but also mesenchymal stem cell surface markers
(CD44, CD73, and CD90) by flow cytometry (34). Proteomic
analysis of exosomes isolated from human bone marrow-derived
mesenchymal stem cells (hBM-MSC)provided evidence of 730
functional proteins associated with MSC proliferation, adhesion,
migration, and morphogenesis (36). Surprisingly, protein
packaging in exosomes is not random, because human primed
MSCs secrete exosomes (pMEX), compared to human primed
MSCs (pMSC), has a high concentration of specific subcategories
of proteins, including secretory proteins and extracellular matrix
(ECM) associated proteins, which may provide the molecular
basis for its unique functional properties (37). In addition to
proteins, MSC-EXOs also contain numerous RNA. Interestingly,
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RNA is specifically incorporated into exosomes, where it
accumulates and then enters the recipient cell to do its job
(38). Interestingly, enrichment of MSC-EXOs with network-
informed miRNA further enhanced the intrinsic ability of
MSC-EXOs to prevent apoptosis, promote angiogenesis and
induce myocardial cell proliferation (39). MSC-EXOs change
the activity and function of target cells primarily through the
horizontal transfer of these substances (Figure 1). Due to the
lack of specific markers, MSC-EXOs are currently prepared
according to size or density. Most laboratories separate
exosomes from conditioned media via hypercentrifugation,
which cannot differentiate exosomes from other EVs or
biological macromolecules (40). The MISEV2018recommends
using the generic term “small/medium/large EVs” based on its
size or density, rather than the classic terms “exosome”, “vesicle”,
and “apoptotic body” (19). However, most of the current articles
Frontiers in Immunology | www.frontiersin.org 3
continue to use classic terms. The sizes of small/medium/large
EVs are partially overlapped and cannot be strictly distinguished.
Therefore, this review takes a cautious attitude towards the
absolute definition of different types of vesicles, and focuses on
the effects of nanoscale EVs (e.g., exosomes on immune cells)
and various autoimmune diseases.

Numerous studies have shown that MSC-EXOs exhibit similar
functions to that of MSCs (e.g., repairing damaged tissues,
regulating immune responses, and playing anti-inflammatory
effects) (10, 41). Although MSC therapy is widely regarded as an
effective therapy for several immunological diseases, the direct
therapeutic effect of MSCs remains limited. Due to the relatively
large size of MSCs, intravascular administration may lead to
vascular obstruction, which can result in pulmonary embolism
and death in severe cases (42). In addition, allogenic immune
rejection or abnormal chromosomal differentiation may occur
A

B

C

FIGURE 1 | Biogenesis and components of exosomes. (A) Exosomes originate from the endosomal pathway. Extracellular material enters the cytoplasm through
plasma membrane depression and endocytosis, and fuses with early endosomes, endoplasmic reticulum and preformed Golgi bodies, to develop into late
endosomes, which are interlinked with the cell membrane network structure to form ILVs containing a vesicle structure. Different concentrations and sizes of ILVs
constitute MVBs. On the one hand, MVBs fuse with lysosomes, degrade the contents, and release them into the cytoplasm. On the other hand, MVBs are
transferred to the cytoplasmic membrane through the membrane system and vesicles are released outside the cell, which are termed exosomes. (B) Exosomes can
act by binding to receptors present on the surface of target cells, by binding to endocytosis, or by the direct binding to recipient cells. (C) Exosome components.
MFGE8, milk fat globule-EGF factor 8 protein; ICAM-1, intercellular adhesion molecule 1; MHC I and II, major histocompatibility complex I and II; LAMP2, lysosomal-
associated membrane protein 2; MAPK, mitogen-activated protein kinase; ERK, extracellular signal-regulated kinase; PGK1, phosphoglycerate kinase 1; GAPDH,
glyceraldehyde 3-phosphate dehydrogenase.
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during in vivo transplantation, and even malignant tumors may
form (43). Also, MSCs cells age rapidly and are expensive to have a
large-scale production (44). Using MSC-EXOs in humans has
several potential advantages over MSCs. First, nano-scale
exosomes are free to pass through various biological barriers
without blocking microvascular circulation. Second, their
application effectively prevents the metastasis of DNA-mutated
cells and hinders the tumor development. Third, the number of
MSCs decreases rapidly following transplantation, whereas the
delivery of MSC-EXOs can continue to function in the body (10).
In addition, MSC-EXOs are considered to be non-immunogenic
and can be produced in a large-scale production for clinic
application (44). However, toxicological studies of nanoparticles
in vivo still need to be fully evaluated, particularly following long-
term exposure (45). Moreover, the discovery of a broad
therapeutic effect of exosome-mediated MSCs eliminates many
of the challenges associated with the use of living replicative cells,
as it fundamentally shifts living-cell-based MSCs therapy to a
“cell-free” treatment, reducing the risk of living cell therapy.
Therefore, MSC-EXOs, as cell-secreted natural EVs, has the
advantage of being an ideal nanoscale drug carrier.
3 IMMUNOMODULATORY FUNCTION
OF MESENCHYMAL STEM CELL-
DERIVED EXOSOMES

3.1 Innate Immunity
3.1.1 Macrophages
As an important aspect of the innate immune system,
macrophages originate from either the yolk sac during
embryonic development or bone marrow-derived monocytes
(46). Under microenvironmental activation, macrophages may
evolve into an M1 phenotype of pro-inflammatory macrophages
or an M2 phenotype of anti-inflammatory macrophages. In
general, M1 macrophages secrete pro-inflammatory molecules,
including TNF-a and IL-1b, whereas M2 macrophages secrete
immune regulatory factors (e.g., IL-10) (47). Recent data support
the findings that the anti-inflammatory effect of MSC-EVs is
inseparably related to macrophage polarization. MSC-EVs inhibit
pro-inflammatory M1 macrophage activation and promote their
polarization to M2 macrophages, which are consistent with a
decrease in the levels of VEGF-A, IFN-g, IL-12, and TNF-a, and
an upregulation of IL-10 (48, 49). Previous studies have reported
that macrophages are the main target cells for MSC-EVs to
alleviate colon inflammation. In dextran sodium sulfate (DSS)-
induced colitis, MSC-EVs effectively alleviate colitis by inducing
an immunosuppressive M2 phenotype exhibited by colonic
macrophage polarization. Compared with the control group,
MSC-EV-treated mice produced a greater number of IL-10-
producing M2 macrophages (49). Similarly, in a study of sepsis
conducted by Song et al., the authors demonstrated that MSC-
EVs promoted M2 macrophage polarization. Human umbilical
cord-derived MSCs(hUC-MSCs) pretreated with IL-1b effectively
induce macrophage polarization into an anti-inflammatory M2
phenotype via exosomal miR-146a, which ultimately resulted in
Frontiers in Immunology | www.frontiersin.org 4
prolonging the survival of sepsis mice (50). Moreover, the results
showed that MSC-EVs down-regulated the production of IL-23
and IL-22, enhanced the anti-inflammatory phenotype of mature
human regulatory macrophages (Mregs), which led to a weakened
Th17 response (51). Zhao et al. reported that adipose-derived
MSC-EXOs(AD-MSC-EXOs) promoted an M2 macrophage
polarization by activating STAT3 transcription, up-regulating
the expression of IL-10 and Arg-1 in macrophages, thereby
inhibiting the inflammatory response of macrophages (52). In
addition, in the rat model of experimental autoimmune uveitis
(EAU), Bai et al. demonstrated that MSC-EXOs treatment
downregulated the proportion of CD68+ macrophages in the
retina and demonstrated the down-regulation of MSC-EXOs on
macrophage migration to the retina (Figure 2) (53). Interestingly,
MSC-EXOs also enhanced the immunosuppressive function of
macrophage precursor, which is called myeloid-derived
suppressor cells (MDSCs), a heterogeneous population of
immature Myeloid derived cells. IL-6 secreted by olfactory ecto-
mesenchymal stem cell-derived exosomes (OE-MSC-EXOs)
activates the JAK2/STAT3 pathway in MDSCs, and enhances
the inhibitory function of MDSCs by upregulating the levels of
arginase, ROS and NO (54). In addition, abundant S100A4 in OE-
MSC-EXOs mediated endogenous IL-6 production of MDSCs
through TLR4 signaling, and along with exosomal-derived IL-6
promotes the immunosuppressive function of MDSC (54).

3.1.2 Natural Killer Cells
NK cells are important effector cells in the innate immune
response and play an important role in the host pathogen
defense. When pathogens invade a host, they kill target cells by
releasing cytotoxic particles containing perforin and granzyme
(55). Although autoimmune diseases are primarily caused by T
and B lymphocytes, NK cells possess excessive activation and
inhibitory receptors, which can play a role in regulating
autologous cell reactivity (56). In addition, NK cells may
regulate the activity of other immune cells by secreting
cytokines and influence the development of the adaptive
immune response through these pathways (57). MSC-EVs
primarily induce an immunosuppressive effect on NK cells,
including the proliferation, activation, and cytotoxicity of NK
cells. In a rat model of EAU, an injection of MSC-EXOs around
the eye restored EAU damage by downregulating the transport of
CD161+ NK cells in the lesion (53). Recent studies have shown
that human fetal liver (FL) MSC-derived exosomes(hFL-MSC-
EXOs) mediated downstream TGF-b/Smad signal transduction
through the surface expression of TGF-b to inhibit the
proliferation and activation of NK cells (58). In human graft-
versus host disease (GVHD) experiments, researchers noted that
MSC-EXOs suppressed the release of IFN-g and TNF-a by
activated NK cells, which reduced the cytotoxic effect of NK
cells, and lessened the inflammatory response (Figure 2) (59).

3.1.3 Dendritic Cells
DCs play an immunological role as antigen presenting cells
(APCs), which can ingest, process, and present antigens to T
and B lymphocytes (60). Most DCs in the body are immature
DCs (iDCs) under normal circumstances and express low levels
September 2021 | Volume 12 | Article 749192
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of class II major histocompatibility complex (MHC II) and T cell
costimulatory molecules (CD80, CD86, and CD40). In addition,
iDCs up-regulate the surface expression of MHC II and
costimulatory molecules after ingesting antigens or cytokine
stimulation, and are converted into mature DC (mDCs) (61).
Previous studies indicate that the immunosuppressive effect of
MSC-EVs on DCs is primarily realized by inhibiting DC
maturation and activation. In the presence of MSC-EVs, iDCs
are impaired in their ability to receive antigens and differentiate
mDCs, which results in the decreased expression of mature and
activation markers (e.g., CD83, CD38 and CD80), and
correspondingly decreased the secretion of pro-inflammatory
cytokines (i.e., IL-6 and IL-12p70) (62). At the same time, MSC-
EVs can also enhance the release of TGF-b and IL-10 in CD11c+

DCs, thereby inhibiting lymphocyte proliferation (63).
Researchers suggest that MSC-EVs treatment inhibits cell
surface expression of MHC II and costimulatory molecules on
CD11c+ cells in a dose-dependent manner. The results showed
that DCs exhibited a hypoactive phenotype and thereby
suppressed the subsequent T cell activation and proliferation
(64). Moreover, the co-culture of MSC-EV-treated DCs with T
cells reduced Th17 cell counts and IL-17 levels, and increased
Foxp3+ regulatory T cells. This finding is consistent with the
previous conclusion (65). In brief, there was a weakened ability of
iDCs co-cultured with MSC-EXOs to differentiate into mDCs.
This led to an inability to perform antigen presentation and
Frontiers in Immunology | www.frontiersin.org 5
effectively stimulate T lymphocyte proliferation. In contrast, it
promoted an increase in Treg cells, which indirectly reflected
that MSC-EXOs can enhance host immune tolerance (Figure 2).
3.2 Adaptive Immunity
3.2.1 B Cells
B cells are important adaptive immune cells, whose main
functions are to mediate humoral immunity and secrete
antibodies. The regulation of MSC-EVs on B lymphocytes was
investigated in vitro. In the CpG-stimulated PBMC co-culture
system, MSC-EVs can completely replicate the inhibitory effect
of MSCs on immunoglobulin secretion, B cell proliferation and
differentiation in a dose-dependent manner (66, 67). Budoni
et al. also claimed that MSC-EVs were internalized by activated
CD19+/CD86+ B cells to inhibit B cell proliferation,
differentiation, and antibody production, as well as inhibit
memory B cell maturation (68). There are functional B cell
subsets, known as regulatory B cells (Bregs). The key function of
Bregs is to release IL-10, which inhibits the production of
proinflammatory cytokines and supports regulatory T cell
differentiation (69). MSC-EVs exert dose-dependent anti-
inflammatory effects by inhibiting B cell maturation and
inducing Bregs in lymph nodes in a murine model of collagen-
induced arthritis (CIA) and delayed-type hypersensitivity
(DTH). Moreover, MSC-EVs also regulate cellular function
FIGURE 2 | The effects of MSC-EVs on immune effector cells.
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through the differential expression of mRNA in related genes.
Researchers found that MSC-EVs induced B cells to down-
regulate the PI3K/Akt signaling pathway through miR-155-5p,
inhibited B cell proliferation and reduced the activation capacity
of B lymphocytes (70). Real-time PCR analysis confirmed that
following exosome treatment from MSC sources, the expression
of genes that played an important role in B cell immune
regulation (e.g., CXCL8 and MZB1) were upregulated (67).
These studies confirmed that MSC-EXOs can play an
immunomodulatory role by acting on B cells (Figure 2).
3.2.2 T Cell
T cell proliferation and activation contribute to the occurrence
and development of many autoimmune diseases. MSC-EVs play
a negative role in T cell proliferation and activation. MSC-EVs
have been shown to carry a variety of active molecules, including
TGF-b (68, 71), IDO protein (72), and miR-125a-3p (73). These
molecules give MSC-EVs the ability to inhibit T cell proliferation
and activation. Studies have revealed that adenosine is associated
with a robust immunosuppressive effect, and MSC-EVs inhibits
T cell proliferation in vitro through adenosine signal
transduction (74). MSC-EVs can also adjust the balance of T
helper type 1 (Th1) and T helper type 2 (Th2) cells and
reconstruct the stable state of Th1 and Th2. Chen et al. co-
cultured bone marrow mesenchymal stem cell (BM-MSC)-
derived exosomes (BM-MSC-EXOs) and peripheral blood
mononuclear cells. The authors subsequently found that it
could promote the Th1 to Th2 conversion of helper T cells,
significantly reduced the levels of pro-inflammatory factors, IL-
1b and TNF-a, and improved the levels of anti-inflammatory
TGF-b (66). In a similar study, human adipose tissue MSC-EXOs
inhibited the differentiation and activation of T cells and the
release of pro-inflammatory factors (e.g., IFN-g) (75). In
addition, MSC-EXOs can facilitate the differentiation of Tregs.
Treg cells are immune cells with negative feedback regulation.
Similarly, inflammatory IL-1b-primed MSC-EVs upregulated
PD-L1 and TGF-b expression, which induced the apoptosis of
activated T cells, and increases the proportion of Treg cells in a
mouse model of autoimmune encephalomyelitis (76). Previous
studies in our laboratory have also found that OE-MSC-EXOs
had a potent inhibitory effect on the proliferation of CD4+ T cells
in experimental colitis mice. At the same time, the secretion of
IL-17 and IFN-g by T cells was reduced, whereas the secretion of
TGF-b and IL-10 was enhanced, which could significantly slow
disease progression (77). Following treatment with OE-MSC-
EXOs, the Th1/Th17 subsets were significantly reduced, while
Treg cells were increased (77). It was found that transgene-free
human induced pluripotent stem cells (iPSCs) derived EVs could
prevent the progression of Sjögren’s syndrome (SS) by inhibiting
the differentiation of follicular helper T (Tfh) and Th17 cells (78).
In addition, other studies have reported that MSC-EXOs can
promote the differentiation of monocytes into an M2
macrophage phenotype, thereby activating the differentiation
of CD4+ T cells into Treg cells and delaying the occurrence of
immune rejection (Figure 2) (79).
Frontiers in Immunology | www.frontiersin.org 6
4 APPLICATIONS OF MESENCHYMAL
STEM CELL-DERIVED EXOSOMES IN
AUTOIMMUNE DISEASES

To develop EVs as a cell-free therapy and elucidate its potential
role in stem cell effects in vivo, the following contents can assess
the role of exosomes released by MSCs in the treatment of
autoimmune diseases, including Multiple sclerosis (MS),
Systemic lupus erythematosus (SLE), Type-1 diabetes (T1DM),
uveitis, Rheumatoid arthritis (RA), and Inflammatory bowel
disease (IBD) (Table 1).
4.1 Multiple Sclerosis
MS is the most common inflammatory disease of the central
nervous system (CNS), which is characterized by demyelination,
neuronal damage and loss, and ultimately neurological
dysfunction (80). Experimental autoimmune encephalomyelitis
(EAE) is the commonly used animal model of MS (81). As the
primary immune cells of the central nervous system, microglia
can maintain tissue homeostasis and contribute to central
nervous system development under normal physiological
conditions (82). Following pathogen invasion, activated
microglia with an M1 phenotype as the first line of defense
secrete pro-inflammatory cytokines to eliminate invading
pathogens. However, when tissue homeostasis is restored,
microglia exhibiting an M2 phenotype need to be activated,
otherwise the excessive release of pro-inflammatory cytokines
can lead to neuronal damage (83). Microglia have both
neurodestructive and neuroprotective functions. An imbalance
of the M1/M2 phenotype inhibits the nerve protection function
and promotes the occurrence of MS (84). Therefore, M1 to M2
polarization of microglia may be beneficial to the
neuroprotective function of microglia, thereby preventing
disease progression. The study by Zijian et al. demonstrated
that BM-MSC-EXOs therapy inhibits microglia from developing
into an M1 phenotype, promotes M2 phenotype polarization,
and secretes anti-inflammatory cytokines (e.g., TNF-a, IL-10,
and TGF-b). Moreover, BM-MSC-EXOs treatment significantly
improved the neurobehavioral symptoms of EAE rats and
relieved the inflammation and demyelination of CNS (85).
Human periodontal ligament stem cells (hPDLSCs)-EVs from
MS patients has been shown to inhibit NALP3 inflammasome
activation in an EAE model (86). Although substantial progress
has been made in the treatment of MS, the appropriate treatment
for MS remains controversial. The currently available drugs may
have potentially harmful side effects and cannot meet future
needs (87). MSC-EXOs is a natural non-toxic vesicle that can
deliver mRNA, miRNA, and proteins, as well as alleviate the
condition of EAE by regulating microglia polarization (88). As
the carrier of MSC-specific tolerance molecules (e.g., PD-L1,
Galecin-1 [GAL-1], and TGF-b), MSC-EVs can effectively
inhibit the activation and proliferation of self-responding
lymphocytes and promote the secretion of anti-inflammatory
cytokines derived from lymphocytes, thereby alleviating EAE
disease progression (76). In another study, it was also shown that
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TABLE 1 | The role of MSC-EVs in the treatment of autoimmune diseases, as discussed in the text.
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the infiltration of microglia in spinal cord sections treated with
MSC-EXOs was significantly reduced, and MSC-EXOs induced
the formation of Tregs and alleviated the development of EAE
(89). Therefore, MSC-EXOs may hold great potential for the
treatment of MS.

4.2 Systemic Lupus Erythematosus
SLE is a chronic autoimmune disease characterized by immune
inflammation and multiple organ damage. In addition, SLE
pathogenesis is extremely complex, primarily due to the
comprehensive influence of genetic, environmental, hormonal,
epigenetic, and other factors (90). With the help of Tfh cells, anti-
nuclear antibodies (ANA) are produced, leading to the
deposition of immune complexes in vital organs. The immune
complex triggers an influx of large inflammatory cells by activating
the complement cascade, causing tissue inflammatory damage
(e.g., nephritis) (91). Nephritis represents the leading cause of
morbidity and mortality in SLE and occurs in approximately half
of all patients (92). In previous studies, researchers found that the
infusion of hBM-MSCs into mouse models of lupus nephritis
reduced the level of autoantibodies, improved the survival rate in
mice, and alleviated the clinical symptoms of glomerulonephritis
by inhibiting the development of Tfh (91). Moreover, the loss of
BM-MSC/osteoblast function in an SLE mouse model results in an
impairment of the osteoblastic niche and an imbalance of immune
homeostasis. Allogeneic bone marrow mesenchymal stem cell
transplantation (MSCT) plays a positive role in reconstructing
the osteoblast niche and restoring immune homeostasis; thus,
effectively reversing multiple organ dysfunction (93). The above
findings confirm a positive therapeutic effect of MSCs on SLE;
however, cellular therapy continues to face technical, cost, and
regulatory challenges in clinical trials. Recent studies have
demonstrated that the immunoregulatory activity of MSCs was
mainly mediated by paracrine factors (e.g., MSC-EVs) (66). In a
novel porcinemodel of coexisting metabolic syndrome (MetS) and
renal artery stenosis (RAS), MSC-EVs isolated from adipose tissue
were capable of improving renal structuring and function, and
reducing renal injury and dysfunction by up-regulating the level of
IL-10 expression (94). Although MSC-EVs have been observed to
inhibit autoimmune diseases in vitro, there have been no studies
on the use of MSC-EVs for the treatment of SLE in mice or
humans. In the future, MSCs are expected to provide a novel and
safe treatment for SLE patients.

4.3 Type-1 Diabetes
T1DM is considered a chronic autoimmune disease that is
influenced by genetic, immune, and environmental factors
(95). T1DM is primarily caused by the autoimmune
destruction of beta-cells in the islets of Langerhans, leading to
insufficient insulin secretion (96). Non-obese diabetic (NOD)
mice are the preferred spontaneous disease model of T1DM.
NOD mice exhibited the same clinical symptoms of diabetes as
human beings-hyperglycemia, polyuria, and polydipsia (95).
Although insulin therapy remains the main treatment method
in the short term, MSCs have recently attracted wide attention as
a promising method for the treatment of diabetes (96). MSCs
display immunomodulatory properties in inflammatory diseases,
T
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and their immunomodulatory effects have been studied in
T1DM (97, 98). Human MSCs have the ability to delay the
onset of autoimmune diabetes by inhibiting the development of
Th1 cells, which may improve the efficacy of islet transplantation
in patients with T1DM (99). Currently, it is generally believed
that a paracrine mechanism of action is more direct in MSCs
in vivo, particularly MSC-EXOs (10). In previous studies, the
effect of MSC-EXOs on diabetes has been investigated. Previous
studies have shown that exosomes released by BM-MSCs had
similar functions to those of BM-MSCs, and they had the ability
to improve cognitive impairment in diabetic mice by repairing
damaged neurons and astrocytes (100). In another study, AD-
MSC-EXOs were found to have a significant mitigatory effect
on T1MD by increasing the expression of anti-inflammatory
factors (e.g., IL-10), and the population of Tregs that are
equipped to suppress the immune response, preventing
immune overactivation and autoimmune damage (101). In
addition, the results of the study by Shigemoto-kuroda et al.
also confirmed that MSC-EVs could inhibit islet inflammation,
significantly increasing the plasma insulin levels, and effectively
delaying the occurrence of T1DM in mice (64). These results
suggested that MSC-EVs have great potential as a cellular
therapy for the prevention of T1DM.

4.4 Uveitis
Uveitis is the leading cause of visual disability worldwide. Uveitis
can be divided into three categories according to etiology: 1)
infectious uveitis; 2) non-infectious uveitis; and 3) masquerade
uveitis, of which non-infectious uveitis is believed to be caused by
autoimmunity, and EAU is used as a mouse model (102).
Traditional immunosuppressive drugs (e.g., corticosteroids) and
novel biological agents have been shown to be effective for the
treatment of uveitis; however, side effects and unknown long-term
safety often limit the use of these drugs (103). A large number of
experimental results have suggested that MSC-EXOs have a
positive effect on inflammatory eye disease. EAU mice that do
not MSC-EXOs therapy have severely damaged retinal
photoreceptors and the infiltration of inflammatory cells,
whereas EAU mice with exosomes injected through tail vein
displayed eyes similar to that of normal mouse retinas, with
almost no structural damage and inflammatory infiltration (64).
Compared with EAU mice treated with PBS, mice treated with
MSC-EXOs exhibited a significant decrease in CD3+ T cells
infiltrating the retina and a decrease in the number of
macrophages migrating to the retina (53). In addition, Th1 and
Th17 cells represent important pathogenic factors in the
development of EAU disease. Flow cytometry results of the
cervical draining lymph nodes (CLNs) showed that the number
of IFN-g+CD4+ cells (Th1) and IL-17+CD4+ cells (Th17) in EAU
mice treated with MSC-EXOs was significantly lower than that in
the PBS-treated mice (64). The above results indicate that MSC-
EXOs can inhibit the development of EAU by inhibiting Th1 and
Th17 cells. Part of the immunomodulatory function of MSCs on
EAU is to induce the transformation of CD4+ T cells into antigen-
specific CD4+CD25+Foxp3+ Tregs by secreting TGF-b in a
paracrine manner (104). In another study, MSC-EVs alleviated
EAU by directly inhibiting the development of Th1 and Th17 cells
Frontiers in Immunology | www.frontiersin.org 9
rather than inducing Tregs to inhibit T cell proliferation (64).
Although there may be some differences between MSC-EVs and
MSCs in various immunomodulatory pathways, the treatment of
EAU using MSC-EVs also represents a potential new method.

4.5 Rheumatoid Arthritis
RA is a chronic inflammatory disease characterized by synovial
hyperplasia and immune cell infiltration, leading to joint
destruction (105, 106). The microvesicles derived from BM-
MSCs carry the regulatory molecules that exist in the mother
cell, including PD-L1, GAL-1, and TGF-b1 (76). As a PD-1
receptor, PD-L1 plays a key role in regulating the development
of inducible T regulatory cells (iTregs) (107). In addition, GAL-1 is
an endogenous lectin that has been shown to induce growth arrest
and the apoptosis of activated T cells, as well as the
immunoregulation mediated by regulatory T cells (108, 109).
Researchers found that the injection of co-gene DBA/1
fibroblasts secreting GAL-1 inhibited the progression of arthritis
through T cell apoptosis in collagen-induced arthritis (110).

Moreover, exosomal miRNA also plays an important role in
alleviating the development of RA (111). For example, MSC-
derived miRNA-150-5p-expressing exosomes decreased the
migration and invasion in RA fibroblast-like synoviocytes (FLS)
and downregulated tube formation in HUVECs by targeting
MMP14 and VEGF (112). In 2020, researchers found that BM-
MSCs-secreted exosomal miRNA-320a and miRNA-192-5p also
acted on FLS, reducing inflammatory response and alleviating the
progression of RA (113, 114). Despite the pathogenic role of B cells
in RA, recent studies have demonstrated the therapeutic effect of
MSC-EXOs via expanding Bregs (48, 115). BM-MSC-EXOs-
treated CIA mice exhibited a lower disease incidence and
deceased clinical score, accompanied by reduced levels of serum
auto-antibodies (115). Furthermore, such phenomena was
associated with decreased plasmablast differentiation and the
generation of Bregs (48). Interestingly, similar therapeutic effects
have been revealed in osteoarthritis (OA). The lncRNA KLF3-AS1
was significantly enriched in MSC-EXOs, which promoted
cartilage repair and chondrocyte proliferation in OA rat models
(116). In addition, in a model of porcine synovitis induced by
bovine serum albumin, the intraarticular injection of BM-MSC-
EVs into pigs had an anti-inflammatory effect, with a reduced
number of synovial lymphocytes and down-regulated level of
TNF-a transcription (117). These results provide evidence for a
role of MSC-EVs for the treatment of inflammatory diseases (e.g.,
arthritis). MSC-EVs provide novel insight into the treatment of
RA, which may lead to new therapeutic opportunities and
strategies for RA.

4.6 Inflammatory Bowel Disease
IBD is a chronic, nonspecific, relapsing inflammatory
gastrointestinal disease associated with mucosal immune
system disorders and gastrointestinal injury. IBD, which
primarily includes ulcerative colitis (UC) and Crohn’s disease
(CD), has become a global disease with an increasing incidence
(118). Studies of this disease have mainly used DSS and 2,4,6-
trinitrobenzenesulfonic acid (TNBS) to induce IBD in mouse
models (119). Existing drugs to treat IBD are still very limited,
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Shen et al. Effects of MSC-EXOS on AID
Therefore, there is an urgent need to develop safe and effective
treatments for IBD (120). At present, several studies have shown
that MSC-EXOs/exosome components have potential functions
in the development of IBD and can serve as potential targets for
the diagnosis and treatment of IBD. In a model of IBD induced
by DSS, hUC-MSC-EXOs treatment decreased the infiltration of
macrophages in colon tissue and inhibited the expression of IL-7
(121). hUC-MSC-EXOs also inhibited neddylation and alleviated
IBD by miR-326 (122). Another study also showed that exosomal
miRNA of MSCs, such us miR-146a, downregulated TNF
receptor-associated factor 6 (TRAF6) and IL-1 receptor-
associated kinase 1 (IRAK1) expression, inhibited pro-
inflammatory cytokine and enhanced the expression of IL-10
(123).Moreover, tumor necrosis factor-a stimulated gene 6
(TSG-6), as detected by hUC-MSC-EXOs, regulated the
immune response of Th2 and Th17 cells in mesenteric lymph
nodes (MLN), down-regulated the levels of pro-inflammatory
cytokines in colon tissue, and up-regulated the levels of anti-
inflammatory cytokines to protect the intestinal barrier (119).
Other tissue-derived MSC-EXOs showed similar efficacy to that
of hUC-MSC-EXOs in the treatment of DSS induced IBD. OE-
MSC-EXOs significantly improved the severity of experimental
colitis in mice primarily by modulating the immune response of
Th-cells, including a significant reduction in Th1/Th17 subsets
and an increase in Treg cells (77). Neda Heidari et al. reported
that AD-MSC-EXOs therapy could restore the percentage of
Treg in the spleen to a baseline level similar to that in normal
mice and improved inflammation in DSS induced acute colitis
(124). Furthermore, metallothionein-2 in hBM-MSC-EXOs
inhibited inflammatory responses, polarized M2b macrophages,
and maintained intestinal barrier integrity (125). With the
further research on exosomes, exosomal-structure design of
novel drugs may provide new insights for IBD.

5 CONCLUSION AND PROSPECTS

The treatment of autoimmune diseases is challenging and there
is currently no effective cure. In this review, we discussed the
regulatory role of MSC-EXOs on immune cells and the new
progress of MSC-EXOs in the treatment of autoimmune diseases,
suggesting that MSC-EXOs may be a new cell-free drug for the
treatment of autoimmune diseases.

In view of the therapeutic potential of MSC-EXOs in
preclinical studies, there are currently 19 clinical trials looking
at its application in a variety of diseases (Available online: http://
www.clinicaltrials.gov/). Although encouraging results have been
achieved with MSC-EXOs, several uncharted territories remain
Frontiers in Immunology | www.frontiersin.org 10
to be explored before MSC-EXOs can be used as drug vectors for
clinical use. First, although it has been reported that clinical-
grade exosomes can be produced using good manufacturing
techniques and standard operating procedures, large-scale
production of exosomes for clinical use remains to be explored
(126). Second, support materials can be used to maximize the
therapeutic power of MSC-EXOs. In recent years, hydrogel has
attracted much attention among biocompatible auxiliary
materials. In the experimental model of ischemia, the retention
time of MSC-EXOs with an injectable hydrogel was prolonged,
which enhanced the therapeutic effect of exosomes (127). In the
experiment of preventing hyperplastic scar in rabbit ear model,
adipose-derived stem cell conditioned Medium (ADSC-CM) was
combined with polysaccharide hydrogel to prolong the
therapeutic effect of cytokines (128). Third, in order to ensure
the safety of patients treated with MSC-EXOs, the route and dose
of exosomes must be explored. At present, the main route of
administration in clinical studies is intravenous infusion.
However, aerosol inhalation of MSC-EXOs was used in clinical
trials to explore the efficacy of MSC-EXOs in severe pulmonary
diseases (Clinical Trials. Gov Identifier: NCT04313647). In
addition, the clinical trial assessing the safety and efficacy of
MSC-EXOs in Patients with Alzheimer’s disease was conducted
with nasal drip (ClinicalTrials.gov Identifier: NCT04388982).
Therefore, the route of exosome administration needs to be
determined according to the actual situation of the disease. In
addition, clinical trials need to monitor patients treated with
MSC-EXOs in real time to ensure that the smallest dose is most
effective. Therefore, future work should focus on the
combination of basic research on MSC-EXOs with emerging
technologies to bring new breakthroughs for the treatment of
autoimmune diseases.
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