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Abstract: Autoimmune diseases (ADs) are characterized by the activation of the immune system
against self-antigens. More common in women than in men and with an early onset, their incidence
is increasing worldwide, and this, combined with their chronic nature, is contributing to an enlarged
medical and economic burden. Conventional immunosuppressive agents are designed to alleviate
symptoms but do not constitute an effective therapy, highlighting a need to develop new alternatives.
In this regard, mesenchymal stem cells (MSCs) have demonstrated powerful immunosuppressive and
regenerative effects. MSC-derived extracellular vesicles (MSC-EVs) have shown some advantages,
such as less immunogenicity, and are proposed as novel therapies for ADs. In this review, we
summarize current perspectives on therapeutic options for ADs based on MSCs and MSC-EVs,
focusing particularly on their mechanism of action exerted through their non-coding RNA (ncRNA)
cargo. A complete state-of-the-art review was performed, centralized on some of the most severe
ADs (rheumatoid arthritis, autoimmune type 1 diabetes mellitus, and systemic lupus erythematosus),
giving evidence that a promising field is evolving to overcome the current knowledge and provide
new therapeutic possibilities centered on MSC-EVs and their role as ncRNA delivery vehicles for AD
gene therapy.

Keywords: mesenchymal stem cells; extracellular vesicles; exosomes; non-coding RNA; microRNA;
immunomodulation; autoimmune diseases

1. Introduction

The incidence of autoimmune diseases (AD) is increasing worldwide, and some of the
most severe, autoimmune type 1 diabetes mellitus (T1DM), systemic lupus erythematosus
(SLE), and rheumatoid arthritis (RA), are estimated to affect at least 2-5% of the popula-
tion in different regions of the world [1,2]. Many of these diseases develop around the
20-40-year age range, being more common in women than in men, with an enormous med-
ical and economic burden due to their chronic course. ADs are characterized by activation
of the immune system against self-antigens and can be classified as organ-specific (T1DM)
or multiple systemic-involved conditions (SLE and RA), based on the affected organs [3]. In
addition, disease courses are characterized by periods of aggressive autoimmune assaults
followed by intervals of decreased inflammation and partial recovery of the affected tissues.
In particular, autoreactive B- and T-cells trigger and drive multiple tissue destruction in the
context of inappropriate local inflammation with the contribution of innate immunity [4].
The immune targets of T1IDM, SLE, and RA are distinct; however, endoplasmic reticulum
stress, reactive oxygen species, and pro-inflammatory and anti-inflammatory cytokines are
shared mediators of tissue damage in these pathologies [5-7].
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An enhanced understanding of the contribution of pro-inflammatory cytokines in the
pathogenesis of certain ADs has led to the introduction of biologicals for their treatment [7-9].
However, biological agent treatment of ADs has several limitations, including high costs,
immunogenicity with the development of neutralizing antibodies, along with side effects
caused by their toxicity [10]. So far, there is no real and effective therapy for ADs, and
conventional immunosuppressive agents such as methotrexate, steroids, and infliximab
act only to alleviate symptoms [11]. Therefore, clinical scientists consider that alternative,
more precise, and specifically targeted therapeutic strategies are urgently needed. Inter-
estingly, several experimental and clinical investigations point to cell-based therapies by
mesenchymal stem cells (MSCs) as a novel therapeutic option for ADs [12-14].

The immune regulatory and regenerative properties of MSCs provide new insights into
AD treatment. It has been demonstrated that MSCs have the ability to regulate both innate
and adaptive immune responses and can be used to treat RA, T1DM, and SLE [15-17].
MSCs can suppress T- and B-cell development and proliferation [18,19], promote the
polarization of macrophages [20], induce more regulatory T-cells (Tregs) [21], reduce the
maturation and cytotoxicity of natural killer (NK) cells [22], as well as impair dendritic
cells (DCs) function [23]. In addition, growing evidence indicates that the predominant
mechanism by which MSCs exert their effects is producing a large variety of paracrine,
rather than cell-to-cell interaction, “secretome” mediators [24]. These soluble factors
include cytokines, chemokines, messenger RNA (mRNA), growth factors, and so forth,
the most important of which are extracellular vesicles (EVs), which can mimic MSC-based
immunomodulatory and regenerative effects by delivering bioactive components, such as
lipids, proteins, nucleic acids, and so on [25,26].

EVs are lipid-bilayer-enclosed nanoscale vesicles released by almost all cell types in
both healthy and pathological conditions, which can be purified from various biofluids [27].
They play an essential role in cell-to-cell communication by transporting and delivering
a vast variety of bioactive molecules, including proteins, lipids, mRNA, and non-coding
RNAs (ncRNAs), such as long non-coding RNAs (IncRNA) and microRNAs (miRNAs),
from parent cells to recipient cells [28]. MSC-derived EVs not only contribute to the
restoration of damaged tissue and alleviate the systemic inflammatory response but also
avoid the disadvantages of their original cells [29,30]. It is worth noting several concerns
that have been raised regarding stem cell therapy including immune rejection, senescence,
low cell survival, and the fact that genetic manipulation of MSCs can enhance the oncogenic
potential of the cells [31]. In light of these observations, interest in the clinical applications
of MSC-derived EVs (MSC-EVs) as drug delivery carriers, among other functions, has been
increasing in recent years [30]. This review summarizes recent advances in the functional
role of MSCs and MSC-EVs in three severe ADs (T1DM, SLE, and RA), with a special focus
on their potential therapeutic effects as gene delivery vehicles of ncRNAs, providing a
rationale for further research into MSCs and MSC-EVs in this field.

2. Properties of MSCs in Autoimmune Diseases

MSCs are a primitive and heterogeneous population of non-hematopoietic multipotent
cells that were discovered first as a fibroblast-like cellular population in the bone marrow
(BM) [32,33]. MSCs were primarily isolated from BM, but they can be obtained from
other human sources [34]. In 2006, the International Society of Cellular Therapy (ISCT)
defined MSCs as cells with plastic adhesion and growth properties, with the expression
of specific cell surface molecules, and with multipotent differentiation capacities under
in vitro conditions [35]. MSCs are able to exert a range of biological functions, the most
well-known being immunosuppressive and regenerative effects. Collectively, this suggests
MSCs-therapy for treatment of ADs (Figure 1) [16,36].
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Figure 1. Inmunomodulatory and pro-regenerative effects of mesenchymal stem cells (MSC) or
MSC-derived extracellular vesicles (MSC-EVs) in autoimmune diseases. MSCs exert effects on T and
B lymphocytes, natural killers (NK), dendritic cells (DC), neutrophils and macrophages by direct
cell-cell interaction of EVs secretion, protecting and regenerating the damaged cells and mitigating
the immune response. Breg: B regulatory cells; IFN: interferon; IL: interleukin; Th1: T helper 1 effector
cells; Th2: T helper 2 effector cells; TNF: tumor necrosis factor; Treg: T regulatory cells. Created mainly
in biorender.com.

2.1. Immunoregulatory and Immunosuppressive Potential

MSCs exert their immunomodulatory effects, high immunosuppressive ability, and
low immunogenicity on both innate and adaptive immune cells through a wide diversity
of mechanisms [16,37]. Thanks to these characteristics, they are extensively studied for

their therapeutic advantages in different inflammatory and ADs.
Multiple subsets of immune cells are present in the autoimmune milieu, and crosstalk

between MSCs and key immune cell players impacts on inflammatory mediators in ADs.
MSCs can regulate the inhibition of proliferation and differentiation of B-cells and T helper
(Th)1, Th17 cells, induction of Treg activation, suppression of DCs maturation, promotion
of the polarization of macrophages to M2, and inhibition of NK cell function [38]. MSCs
also exert immunomodulatory roles through soluble factors such as prostaglandin-E2
(PGE2), IDO, NO, transforming growth factor—f3 (TGF-31), and human leukocyte antigen-
G5 [39,40].

The most significant effect of MSCs on T-cells is to inhibit the proliferation of Th17, Th1,
and granulocyte-macrophage colony-stimulating factor-expressing CD4" T cells. MSCs
also induce Th2, an anti-inflammatory subtype [41]. A study by Ma et al. demonstrated that
human umbilical cord MSCs (UC-MSCs) can reduce Th17 cell number via down-regulating
RORyt, and up-regulating Foxp3 to augment the Treg percentage in RA [20]. Rashedi et al.
reported that MSCs can indirectly induce CD4+ lymphocytes to differentiate into Treg cells
or directly interact with Tregs through the Notch signaling [42]. In addition, BM-MSCs
can also inhibit the production of inflammatory cytokines (TNF-c, IL-17, IL-6, IL-2, IFN-y,
and IL-9) via T-cells in RA [43], and MSCs restores the immune response by enhancing
Treg/Th17 cell ratios and regulating TGF-f3 and PGE2 [44,45].

Besides, MSCs also inhibit B lymphocyte proliferation, differentiation, antibody pro-
duction, and chemotaxis under inflammatory conditions [46], and favor regulatory B (Breg,)
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cell expansion. A recent study has implied that MSCs prevent proliferation, differentia-
tion, and antibody secretion of B-cells through the CCL2-MST1-mTOR-STAT1-mediated
metabolic signaling pathway [47]. Moreover, MSCs enhance increased Breg cells through
the SDF-1-CXCR? axis, maintaining immune tolerance and inhibiting inflammatory and
immune responses [48]. Most interestingly, the suppressive activities of MSCs on B-cells
also depend on the interaction between MSCs and T-cells [19,49].

Furthermore, MSCs affect the DC’s maturation by down-regulating co-stimulatory
molecule expression and MHC class II [50]. Lu et al. suggested that MSCs attenuate
lipopolysaccharide-induced acute lung injury by inducing the production of regulatory
DCs (DCregs) via Notch signaling activation [51]. A recent study showed that the mecha-
nism by which MSCs inhibit DCs may be achieved through the CD200/CD200R pathway,
which acts mainly on the DC maturation process [52]. In addition, MSCs increase the abil-
ity of monocyte-derived DCs to polarize IL-17-/1L-10-producing T-cells via CTLA-4 [53].
Interestingly, human MSCs also express several ligands for activating NK cell receptors,
and through the high-level expression of TGF-y, IDO, and PGE2, decrease NK cell pro-
liferation [54,55]. Interactions between MSCs and NK cells are necessary to reduce NK
cytotoxicity. In addition, a recent study revealed differential crosstalk between MSCs and
two highly cytotoxic NK lines, KHYG-1 and NK-92, and this fact should be taken into
account when designing cell therapy protocols [23]. Finally, MSCs can reprogram the
functions of the macrophage by driving macrophage differentiation into anti-inflammatory
phenotype M2, inhibiting nuclear factor-kb/p65, altering their metabolic status via a
PGE2-dependent mechanism, or activating signal transducer and activator of transcription
3 signaling pathways [56-58].

Taken together, these findings show MSCs to be involved in autoimmune disorders
by influencing immune cell proliferation, differentiation, and function. Given the high
plasticity of their immunomodulatory effects, research may be needed to determine the
application of MSCs in treating ADs. However, the microenvironment influences the
induction, increase, and maintenance of MSCs” immunoregulatory role [59]. Blocking
immune cell reprogramming and maintaining MSC roles in the immune microenvironment
would provide new insights into the identification of valuable strategies for the biological
treatment of ADs.

2.2. Regenerative Properties

The value of MSCs in the application of regenerative medicine has been a focus of in-
depth study in recent years [60,61], centered mainly on the reconstruction of fragile tissues,
including the musculoskeletal system, nervous system, cornea, trachea, myocardium, liver,
and skin [60].

The safety and efficacy of MSCs in the treatment of joint-related diseases and cartilage
injuries have been continuously examined over the last few decades [62]. The promising
qualities of MSC-based therapies could potentially provide effective and less-invasive
procedures to repair articular cartilage defects [63]. First, MSCs can differentiate into
chondrocytes [64]. Second, MSCs secrete a large number of trophic factors to promote
angiogenesis, anti-fibrosis, anti-apoptosis, and other processes [64]. Moreover, novel
bioactive 3D scaffolds, such as hydrogels [65] and electrospun scaffolds [66], provide an
optimal 3D microenvironment for cartilage regeneration. Moreover, the biocompatibility
of MSCs and hydrogels can facilitate MSC proliferation, differentiation, migration, and
adhesion, potentiating the role of MSCs as a regenerative drug [65,67]. Injectable hydrogels
allow minimally invasive treatment in cartilage repair [68]; thus, hydrogels loaded with
MSCs and bioactive components are highly effective for repairing cartilage damage. Despite
promising clinical trials [69,70], there are no commercially available products for MSC-
based cartilage repair.

MSC therapy may be a promising option for islet transplantation in T1IDM, reducing
immune reactivity and promoting vascularization, cell survival, and regeneration [71]. A
study by Lee et al. demonstrated that multipotent stromal cells from BM promote the repair
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of pancreatic islets and renal glomeruli in diabetic mice [72]. Another study provided a
fundamental understanding of MSC interactions in rescuing fulminant hepatic failure in
pigs [73]. Moreover, several clinical trials showed that allogeneic MSC therapy is a potential
option for the treatment of liver cirrhosis caused by ADs [74], as a means of enhancing
liver transplantation results to induce tolerance after transplantation [75] or for improving
histologic fibrosis and liver function in patients with alcoholic cirrhosis [76].

Recent progress has also been reported in skin regeneration, in which MSCs signif-
icantly improve wound condition and angiogenesis [77,78]. Besides, artificial scaffolds
combined with MSC-based therapy offer a promising strategy to facilitate wound healing
or the complete reconstruction of skin. A large number of different types of scaffolds,
such as fibrin hydrogels [79], albumin [80], sericin hydrogels [81], boron oxygen-sensing
nanoparticles impregnated into a polycaprolactone/chitosan layer [82], and curcumin
nanoparticle-loaded collagen-alginate scaffolds [83], have been developed to support the
role of MSCs as a regenerative strategy of defective skin.

Finally, MSC therapy has been investigated for nerve regeneration, corneal repair, at-
tenuating myocardial damage, and other musculoskeletal tissue outside bone and cartilage,
with excellent outcomes [84-87].

Current evidence supports the use of MSCs for tissue regeneration. However, the use
of MSCs to treat human diseases has raised several concerns, such as limited cell survival,
senescence-induced genetic instability, loss of function, and immune-mediated rejection.
Although preclinical studies demonstrate the possibility of MSC-based therapy in animal
models, there are few reports of its clinical application. Further works including stem cell
biology, biomaterials, and tissue engineering are crucial for MSC therapy:.

2.3. MSC-EVs as Cell-Free Therapy

MSCs are not the only cells to show great immunomodulatory and regenerative
potential; their secretome, including MSC-EVs as vehicles of paracrine factors, have demon-
strated similar effects, which confer some advantages over their parent MSCs, representing
a promising cell-free therapeutic alternative.

As defined by the International Society of Extracellular Vesicles (ISEV), EVs are small,
round-shaped phospholipid bilayer structures released into the intercellular space by most
types of eukaryotic cells, and in many body biofluids [88]. EVs comprise a heterogeneous
population including exosomes, microvesicles (MVs), and apoptotic bodies [89]. Exosomes
are the smallest, ranging from 40 to 150 nm, originating from the endosomal pathway
creating multivesicular bodies, and released by fusion with the plasma membrane. MVs,
microparticles, or ectosomes are 100 to 1000 nm in size and are directly formed by bleb-
bing and budding mechanisms from the plasma membrane; and lastly, apoptotic bodies
(1000-5000 nm) are released from blebbing cells during the late stages of apoptosis [28,90].
The main role of EVs, which underpins their growing status as important players in physio-
logical and pathological states, is to participate in intercellular communication to exchange
biomolecules such as DNA, mRNA, lipids, proteins, and ncRNA [88,91]. Accumulating
evidence has shown that specific miRNA profiles are diagnostic biomarkers and therapeutic
targets in several ADs [92,93].

MSC-EV offers several different advantages over parent stem cells with regard to both
regulatory approval and therapeutic development [94]. EVs are not subject to Food and
Drug Administration (FDA) rules regulating the administration of living cells and do not
possess carcinogenic potential themselves. In addition, EVs are highly stable and easily
stored for long-term usage, and there is no evidence that EV doses can have divergent
immunomodulatory influences [88,95]. Furthermore, EVs are also able to cross the blood-
brain barrier, an advantageous characteristic for treating patients with central nervous
system involvement, as occurs in ADs [96]. Finally, the application of EVs produced by
genetically manipulated MSCs cells is not subject to additional regulation. According to
ISEV, EVs will be considered biological medicinal products, so EV-based therapies would
be considered in accordance with guidelines regulating medicinal products [97].
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2.3.1. Immunomodulatory Properties

Increasing research suggests that MSC-EVs possess similar immunomodulatory prop-
erties as MSCs [98]; MSC-EVs can also exert immunosuppressive effects on T-cells [99],
B-cells [100], macrophages [101], DCs [102], and NK cells [103].

Similarly, MSC-EVs can inhibit T-cell activation and development by decreasing
interferon-y generated by CD4* T cells [104,105], induce cell cycle arrest through the
p27kip1/Cdk2 signaling pathway [106], and promote the differentiation of Th1 and Treg
from naive CD4* T-cells [107]. MSC-derived MVs can induce apoptosis in activated T-cells
and also boost the production of CD4*CD25"Foxp3* Tregs [108], also by increasing IL-
10 and TGF-{3 [109,110]. In B-cells, MSC-EVs reduced immunoglobulin production and
inhibited B-cell proliferation and differentiation [111]. The immunosuppressive role of MSC-
EVs in macrophages is also well-known. Hyvarinen et al. have shown that MSC-EVs down-
regulate IL-23 and IL-22 and promote inflammation, enhancing the anti-inflammatory
phenotype of regulatory macrophages [112]. EVs derived from MSCs can suppress pro-
inflammatory phenotype (M1) macrophage activation but promote anti-inflammatory
phenotype (M2) macrophage activation [101,113]. Accumulating data indicate that MSC-
EVs inhibit NK cell proliferation by regulating TGF-f [114]. In addition, most MSC-EV
immunoregulatory roles are regulated by carrying various “messengers”: DNA, mRNA,
proteins, lipids, and ncRNAs [89,115]. In summary, these findings provide evidence for an
immunoregulatory effect of MSC-EVs.

2.3.2. Regenerative Effect

The regenerative action of MSC-EVs has been well documented in previously pub-
lished studies [116,117]. A Zhang et al. study demonstrated, for the first time, the efficacy
of human embryonic MSC exosomes in cartilage repair [118]. Recent research showed that
MSC-EVs not only promoted proliferation and migration of human osteoarthritis (OA)
chondrocytes but also maintained the chondrocyte matrix [119]. Moreover, MSC-EVs were
internalized by OA chondrocytes, repealed TNF-x adverse effects, and promoted cartilage
regeneration [120]. For other musculoskeletal tissue outside cartilage, Chen et al. tested the
ability of MSC-EVs to repair tendon damage, obtaining a greater tenocyte proliferation and
migration, together with an improvement of the mechanical stress tendon [121]. Nakamura
et al. showed that MSC-derived exosomes (MSC-exos) promote muscle regeneration by
enhancing myogenesis and angiogenesis [122].

Currently, numerous studies show that MSC-EVs may positively modulate different
phases of the wound-healing process [123]. A recent study by Ren et al. showed that
MSC-EVs therapy of skin wounds in mice produced an increase in proliferation and vascu-
larization of endothelial cells and increased collagen deposition, resulting in accelerated
healing in untreated wounds [124]. In addition, hypoxic MSC-exos applied to skin wounds
in a diabetic rat model were more effective in inducing angiogenesis and promoting wound
healing than the unconditioned MSC-EVs [125]. Another potential advantage of MSC-EVs
is their scarless wound healing capability. In a recent study, Wang et al. accelerated wound
closure in a full-thickness skin wound mouse model, inducing the expression of genes
encoding ECM proteins and increasing the proliferation and migration of dermal fibrob-
lasts [126]. This EV collagen induction result is promoted in the early stages of wound
healing, while it inhibits collagen biosynthesis at later stages [127]. Besides this, MSC-EVs
promoted the proliferation and migration of skin keratinocytes, with the upregulation of
proliferative marker genes such as cyclins, as well as fibronectin [124]. Finally, the exoge-
nous cell-free approach of using MSC-EVs therapeutically has shown promising results
in attenuating neurodegenerative disorders [128], myocardial damage [129], and corneal
damage [130], among others.

Recent studies have demonstrated that MSC-EV-ncRNAs, and miRNAs overall, exert
significant immunoregulatory [131,132] and regenerative effects [133]. In the following
sections of this review, we outline the therapeutic role of ncRNAs packaged into MSC-EVs
in ADs, focusing on examples such as drug delivery systems (Figure 2).
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Figure 2. Origin and therapeutic purposes of mesenchymal stem cells (MSC) and MSC-derived
exosomes (MSC-Exos). MSCs are found in many tissues, such as lung (L), liver (LH), dental pulp
(DP), bone marrow (BM), adipose tissue (AD), umbilical cord (UC) and placenta (P). MSC-Exos
play therapeutic roles as drug delivery systems (targeted MSC-exos) for immunomodulation, an-ti-
inflammatory effect and tissue regeneration and engineering. Created mainly in biorender.com.

3. Key Points in MSC EVs as Non-Coding RNA Delivery Vehicles
3.1. Different Sources of MSCs

Although the BM was the first described source of MSCs [134,135], they have sub-
sequently been isolated from other adult tissues such as placenta, umbilical cord, dental
pulp, and adipose tissue. The most frequent sources of MSC for therapeutic use have been
BM-MSC, adipose tissue (AD-MSC), and fetal tissues (amniotic membrane and placenta
(P-MSC), and UC-MSC tissue or blood) [136,137]. MSCs differ in terms of their prolif-
eration activity, multilineage capacities, overall gene expression profile, and biological
functions [138,139]. BM-MSCs were the best-described source of MSCs used in clinical
trials, although their biological capacities decrease with age and vary according to donor
sources [139,140]. Painful invasive procedures are required to obtain BM samples and there
is a risk of viral exposure. AD-MSCs can be easily obtained via subcutaneous lipoaspiration
and isolated from stromal vascular fractions and can yield up to 500-fold more MSCs than
BM [141]. In a recent study, Menard et al. showed that AD-MSC exhibited a strong inhibi-
tion of immune response and low immunogenicity, supporting the use of adipose tissue as
an important source for clinical applications in immune-mediated diseases [142]. Human
MSC from neonatal tissues such as umbilical cord, placental decidua, and amniotic and
chorionic membranes, are good options for cell therapy due to their biological characteris-
tics as immature cells [143]. Of interest, UC-MSC may be less immunogenic and display
a unique gene expression profile, modulating processes such as immunomodulation, an-
giogenesis, wound healing, apoptosis, antitumor activity, and chemotaxis, compared to
BM-MSC [144,145]. Another study compared the immunophenotype, proliferative po-
tential, multilineage differentiation, and immunomodulatory capacity of MSCs derived
from BM, adipose tissue, placenta, and umbilical cord blood, concluding that BM-MSCs
and AD-MSCs represent the optimal stem cell source for tissue engineering and regen-
erative medicine [146]. In 2014, Rolandsson et al. demonstrated that MSC isolated from
central and peripheral transbronchial biopsies of lung-transplanted patients were found
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perivascularly and enriched in CD90 and CD105 surface proteins and lung resident MSC
(LR-MSC) [147]. Later, LR-MSC were phenotypically characterized and compared with
BM-MSCs, highlighting their unique phenotype and gene expression pattern [148]. The
liver is a novel reservoir of stem cells. Compared with MSC from other tissues, liver-derived
human MSCs (LHMSCs) possess similar morphological properties, immune functions, and
differentiation capacities [149]. However, LHMCSs are different in their surface proteins
and biological functions. In 2009, a group of investigators ranging from basic biologists to
clinical hepatologists first defined standardized methods to assess stem/progenitor cells
or their hepatic lineage-committed progeny that could be used for cell therapy in liver
disease [150]. Finally, a recent preliminary study described the basic characteristics and
biological functions of menstrual MSCs and their derived EVs. They also demonstrated
the therapeutic potential of small EVs in fulminant hepatic failure, myocardial infarction,
pulmonary fibrosis, prostate cancer, cutaneous wound, T1DM, aged fertility, and potential
diseases [151].

3.2. Non-Coding RNA Cargos

The effect of MSC-EVs on receptor cells depends on their origin but also mainly on
their content. Apart from known cargos such as lipids, proteins, and DNA, ncRNAs have
emerged as a great source of potential EV-linked therapies due to their mechanism of
action and the variety of exerted effects, including the regulation of biological processes,
modification of cellular phenotype, and mediation in intercellular communication [152,153].
ncRNAs have been shown to act at all levels of gene regulation, including transcription,
mRNA stability, and translation [154]. In the progression of therapies based on EV transfer,
studies are increasingly focused on ncRNAs cargos, either using those present biologically
in EVs or developing techniques to chemically load them inside EVs for targeted delivery.
In addition, RNA sequencing studies have enabled the study of MSC-EV content and have
convincingly been shown to be enriched in non-coding cargos [155,156].

Widely studied as EV cargos, miRNAs carry out multiple functions in target cells.
Biologically, they interact with mRNAs regulating transcription and also act at the post-
transcriptional level. Their expression has been demonstrated to change between physio-
logical and pathological states, which makes them ideal targets for disease diagnosis and
therapy. Indeed, most authors report their usefulness for therapeutic approaches using
MSCs [157,158]. In a recent study by Xiong et al., exosomal miR-21 from P-MSCs attenuates
senescence by regulating the PTEN /PI3K-Nrf2 axis and elevating the antioxidant capac-
ity [159]. Autoimmune and inflammatory diseases and cancer are the most common focuses
of study in this field; for instance, in an OA in vitro model, it was shown that miR-129-5p in
human synovial MSC (HS-MSC)-derived exosomes decreased the inflammatory response
and apoptosis of chondrocytes by targeting the 3'UTR of HMGBI1 [160].

Small interfering RNAs (siRNAs) are small RNA molecules whose regulation mech-
anism consists of silencing gene expression by either transcription suppression or by
triggering sequence-specific degradation of target mRNAs [161]. The therapeutic use of
siRNAs enclosed in MSC-EVs is mainly based on their artificial loading for specific delivery
to target cells. This strategy offers certain advantages over the use of viral or physical and
chemical vectors for gene therapy, as, despite representing great advances in the field, they
still have certain limitations such as immunogenicity, systemic inflammatory response,
toxicity, and failure to deliver high doses in vivo [162-164]. These limitations are resolved
with the use of EV-siRNAs, since engineered exosomes are able to effectively deliver siR-
NAs such as siKRAS or siPLK1 to target cells and knockdown their expression, inhibiting
lung and bladder tumor growth, respectively [165,166]. Particularly, the use of hybrid
nanovesicles composed of exosomes and liposomes has shown good results, combining the
benefits of both systems to achieve effective cargo delivery [167]. MSC-EV-based therapies
with siRNAs are poorly developed, yet some studies have demonstrated their effective-
ness [168,169]. Both in vitro and in a spinal cord injury disease model, Huang et al. showed
that MSC-exos loaded with CTGF siRNA produce decreased inflammation and neuronal
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apoptosis, also reducing glial scar formation and positively activating factors for locomotor
recovery [170]. More surprisingly, another study in spinal cord injury demonstrated that
the intranasal delivery of phosphatase and tensin siRNAs from MSC-exos promoted a
complete recovery from injury, enhancing axonal growth and neovascularization [171].
Despite the paucity of research available as yet, promising results are being obtained for
siRNA therapies in this field, with EVs as optimal delivery carriers.

LncRNAs are a diverse class of ncRNAs longer than 200 nt that engage in key biological
processes through epigenetic, transcriptional, and post-transcriptional regulation [172,173].
Although their structural and functional characterization is not yet well defined, IncRNAs
account for a large percentage of the transcriptome, and novel types are continuously
discovered and functionally described. LncRNAs have been proposed not only as biomark-
ers but also as potential therapeutic elements, given their broad spectrum of described
functions such as epigenetics, nuclear import, alternative splicing, and their ability to
interact with miRNAs through several mechanisms [172,174,175]. In the context of ADs
and inflammatory diseases, IncRNAs are expressed in and regulate various immune sys-
tem cell types, and their altered levels have been related to autoimmunity and disease
features [176-178]. Consequently, a strategy based on IncRNA-EV-mediated delivery is
emerging as a new frontier in therapy development [179]. Proof of this is the use of MSC-
exos with the IncRNA KIf3-AS1 for OA treatment, which promoted cartilage repair and
chondrocyte proliferation in an OA rat model [180]. Similarly, IncRNA SNHG? transported
inside exosomes derived from MSCs curbed the endothelial-mesenchymal transition and
tube formation in diabetic retinopathy through interaction with miR34a-5p, demonstrating
the valuable role of IncRNAs for miRNA regulation [181].

Not as extensively studied as other ncRNAs, circular RNAs (circRNAs) are abundant
and stable covalently closed single-stranded RNAs without 5’ and 3’ ends [182,183]. The
lack of these ends makes circRNNAs resistant to exonuclease degradation, and thus more
stable than most linear ncRNAs. CircRNAs have been shown to regulate the transcription
of miRNA target genes acting as miRNA sponges, interact with RNA binding proteins, and
also participate in mRNA stability and protein translation [184,185]. The involvement of
circRNAs has been reported in several diseases, mostly in cancer, thus they are increasingly
proposed as EV therapeutic cargos. In a recent study on pancreatic cancer, exosomal
circ_0030167 from BM-MSCs prevented cell invasion, migration, and proliferation, acting
as a sponge for miR-338-5p [186]. Moreover, therapeutic use with MSC-EVs also extends to
autoimmune and inflammatory diseases [187,188].

Finally, other non-coding cargos of EVs include Piwi-interacting RNAs (piRNAs),
small RNAs that interact with PIWI proteins to silence genetic elements such as transposons,
with functions ranging from gene expression regulation to viral defense [189]. PIRNAs
have revealed key implications in cancer and neurodegenerative disorders, and have been
proposed as markers in diagnostic, prognostic, and treatment aims [190-192]. Although
their presence in MSC-EVs has been demonstrated [156], no studies using piRNAs as
therapeutic cargos in MSC-EVs have been conducted to date.

3.3. Separation Methods

EVs isolation and purification constitute the first step to use them as therapeutic
agents. Despite interest in the field during recent years, there is still a need for well-
designed protocols with consensus among the scientific community for the isolation and
characterization of EVs. The optimal isolation method will depend mainly on the quantity
and type of initial sample, the amount of EVs present in them, and their final use.

Differential ultracentrifugation (UC) and density gradient UC are both considered
gold standard methods for EV isolation and have been in use for decades. Traditional
UC protocols employ centrifugal force, which mediates sequential centrifugations with
increasing velocity to precipitate different vesicles according to their sedimentation co-
efficient rate. UC allows large sample volume processing (urine and cell medium) but
requires specific and expensive equipment [193]. To improve the purity and fractionation
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of EV subpopulations, density gradient UC separates vesicles using a pre-constructed
decreasing gradient medium, usually made of sucrose, iohexol, or iodixanol. Combining
both methods could be an interesting alternative when aiming to process large volumes
with high purity [194].

Size-based methods, ultrafiltration, and size exclusion chromatography (SEC) have
been extensively used to separate mixtures with molecules of different sizes. For ultrafil-
tration, a semipermeable membrane is used, usually made of cellulose, polyethersulfone,
or Hydrosart, with a defined pore size between 10 and 100 KDa. This technique is also
employed for the concentration of samples isolated by other methods such as UC, and
can greatly enrich exosome concentration at a low cost but with low purity [195,196].
Conversely, SEC uses columns with a stationary phase, commonly a porous resin such
as sepharose. Dissolved in a mobile phase, samples will migrate and separate along the
resin based on their differential elution profile. The smallest particles, such as exosomes,
penetrate the porous resin and are eluted after larger particles, also with minimal structural
damage [197,198].

Polymer-based precipitation is based on the use of highly hydrophilic polymers
(Polyethylene glycol (PEG)), which interact with water molecules surrounding the exo-
somes to create a hydrophobic microenvironment, resulting in exosome precipitation with
low-speed centrifugation [199,200]. However, certain aggregates and proteins can some-
times be precipitated along with exosomes, decreasing the purity of the sample. To solve
this problem, exosomes can be immunoprecipitated by incubating the sample to specific
exosome surface markers with antibody-coupled magnetic beads [201,202]. Indeed, affinity
precipitation methods open up the possibility of isolating EVs from specific cells/tissue,
which could be an interesting option. Nonetheless, this methodology is still the most
expensive due to the use of antibodies, and the EV marker panel needs to be improved.

Finally, microfluidic technology specifically captures and isolates exosomes, combin-
ing immunoaffinity, size, and density [203]. Through the use of chips with embedded
antibodies, small sample amounts can be loaded to isolate exosomes. This methodology
combines new advantages such as efficient and fast processing with high purity [204].
Microfluidics has promise, but the method is still in need of greater standardization.

The validation of isolated EVs is recommended before their use in order to ensure
purity and experimental accuracy. The characterization of EVs allows us to determine their
concentration, confirm the absence of contaminating proteins or organelles, and identify
the cell of origin and cargo. Several techniques are employed for this purpose, such as
nanoparticle tracking analyses (NTA) or dynamic light scattering (DLS) to assess the size
and number of particles, transmission electron microscopy to confirm EVs” morphology,
and the well-known Western blot to evaluate the presence of contaminant proteins.

3.4. Exosome Administration Routes

Selecting the most suitable exosome administration route, including the dose adminis-
trated, and considering the stability, biodistribution, and toxicity of delivered exosomes is
one of the keys to achieving successful cell-free therapy. The most commonly used admin-
istration routes employed in in vivo assays are described in the following subsections.

Despite being the most popular administration route for its ability to reach the whole
organism, systemic injection presents some disadvantages, such as the accumulation of
exosomes in non-targeted organs, commonly the liver, spleen, and lungs, and quick clear-
ance from the organism [205]. In the context of ADs described in this review, numerous
studies have employed this technique. In cutaneous affections such as TIDM-derived
ulcers, subcutaneous injection of exosomes is an effective therapy. Several studies have
described the potential application of exosomes to improve wound healing after cutaneous
administration of injured areas [206-208]. Regarding skin administration methods, injection
into the dermis, known as intradermal injection [187,208], and topical application [209,210]
are other simple options to treat skin affections. Intraperitoneal delivery of exosomes is
another administration route, with wide exosome distribution potential [211,212]. In 2018,
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Chen et al. proved that BM-MSC exosomes enriched in miR-150-5p suppress VEGF and
MMP14 expression, resulting in negative regulation of IL-f3, TNF-«, and TGF-3, which sup-
presses the proliferation and migration of fibroblast-like synoviocytes (FLS), angiogenesis,
and alleviation of inflammation [213].

Intranasal administration is an attractive option when the objective is to cross the blood-
brain barrier, avoiding exosome breakdown in other organs and favoring accumulation
in the brain, resulting in better neuroprotective effects [171,214,215]. Oral treatment is an
easier and non-invasive route, although the delivered exosomes must survive passage
through the intestinal tract. In the context of ADs, 2015 was the first time that the oral
administration of exosomes isolated from bovine milk had the potential to delay the onset
of RA, decreasing cartilage injury, BM inflammation, and the reduction of MCP-1 and IL-6
levels [216].

Additionally, other options for exosome delivery are suitable for different conditions
to be treated. Intra-articular injection next to the damaged tissue has been used for RA,
resulting in more effective tissue regeneration due to the direct application of the therapeutic
agent to the damaged area [217,218]. Likewise, subconjunctival, intravitreal, and intraocular
administration, despite being invasive and disturbing methods, have been employed to
treat retinal diabetes complications with positive results [219-221].

4. Therapeutic Effects of ncRNA in MSC EVs in Autoimmune Diseases
4.1. Rheumatoid Arthritis

RA is a chronic inflammatory AD that affects 0.5-1% of the general population, im-
posing a significant burden on the social and economic system. Among its principal
features, the most frequent include hyperplasia of the synovial membrane, infiltration
of inflammatory cells, bone and cartilage progressive destruction, and multiple organ
involvement [222], leading to a worsening in life quality. Unfortunately, there is no cure for
RA, making the discovery of new effective treatments to attenuate pain and stop further
damage imperative.

The above-described anti-fibrotic and anti-inflammatory beneficial properties of MSCs
have been also demonstrated in RA, such as their ability to improve RA progression by
regulating memory T-cell responses [20,223,224]. Given their benefits, the use of MSCs-
EVs as a cell-free therapeutic tool for the treatment of RA has become an interesting
field of study during the last years. In this context, EVs have been associated with the
propagation and attenuation of joint inflammation and destruction [225]. In a model of
collagen-induced arthritis (CIA), Consenza et al. described, for the first time, that MSC-EVs,
especially exosomes, promoted a reduction of disease signs by reducing plasma blast cells
and increasing B-cells secreting IL-10 [226]. Furthermore, human UC-MSC-derived EVs
can also inhibit the expression of IL-17 by down-regulating Th17 cells and increasing the
proportion of Treg cells in a dose-dependent manner [20].

The therapeutic properties of EVs depend mostly on their cargo, among which miR-
NAs are the most predominant and well-known (Table 1). Consistently, MSC-exos enriched
in miR-320a mimic significantly suppressed RA-FLS activation, migration, and invasion
in vitro and diminished arthritis and bone damage in mice with CIA [227]. Additionally,
miR-34a and miR-192-5p in EVs from BM-MSCs have been linked to the reduction of
inflammation via the cyclin I/ ATM/ATR/p53 axis [228] and to a delay in the inflamma-
tory response [218]. Likewise, the overexpression of miR-124a in BM-MSC-derived EVs
inhibited the proliferation and migration of the FLS cell line and promoted apoptosis of
these cells during co-incubation [229].
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Table 1. Preclinical studies based on MSC-EV therapy in autoimmune diseases.
MSC Source ncRNA Cargo Disease Model Admin. Way Mechanism/Effect Ref.
FLS and HUVEC
BM-MSCs miR-150-5p in vitro cells; CIA 1P Modulates MMP14 and VEGF [213]
mice model
BM-MSCs miR-320a In vitro and CIA v Regulate§ RA FLS actlvatlon' by [227]
mice model suppressing CXCL9 expression
. RA FLS in vitro model Reduces inflammation via the
BM-MSCs miRk-34a and rat model v cyclin I/ ATM/ATR/p53 axis [228]
BM-MSCs miR-192-5p CIA rat model IA _ Delaysthe [218]
inflammatory response
Inhibits proliferation and
BM-MSCs miR-124a MHY7A cell line - migration of FLS cell line and [229]
promotes apoptosis
Impairs RA FLS
IncRNA Human synovial cell activation through
BM-MSCs HAND2-AS1 line MH7A ) miR-143-3p/TNFAIP3/NF-«B [230]
pathway
Attenuates cell proliferation,
. human synovial cell migration and inflammation of
BM-MSCs circEBXW7 line and rat model 1D FLS by targeting [187]
miR-216a-3p/HDAC4
Svnovial- Downregulates the expression
}II\/IS Cs Ad-circEDIL3 CIA mice model IA of VEGF induced by the [217]
IL-6/sIL-6R complex
Ameliorates peripheral
miR-17, miR-23a . neuropathy through
BM-MSCs and miR-125b db/db diabetic mice v TLR4/NF-«B signalling [231]
pathway
. . ) Reduces retinal inflammation
UC-MSCs miR-126 Hsgztriizgtglgés VT by downregulating the [219]
HMGB1 pathway
Ameliorates erectile
. STZ diabetic rats and .
BM-MSCs miR-21-5p HG-treated CCSMCs v dysfunction through PDCD4 [232]
downregulation
AD-MSCs miR-222 STZ diabetic rabbits IV, SC and 1O Retina regeneration [220]
Relieves inflammatory response
. o . . and angiogenesis ameliorating
AD-MSCs miR-192 STZ diabetic rats IVT diabetic retinal damage through [221]
downregulation of ITGA1
Inhibits oxidative stress,
. HG-treated inflammation and apoptosis in
BM-MSCs miR-486-3p Muller cells ) diabetic retinopathy via [233]
TLR4/NF-kB axis repression
Induces autophagy and
. Kidney epithelial cells inhibition of apoptosis in
BM-MSCs miR-125b HG-treated diabetic nephropathy via [234]
downregulation of TRAF6
STZ diabetic rats and Protects against diabetic
AD-MSCs miR-125a HG-treated rat ' v n(.ephropathy by targeting [235]
glomerular mesangial Histone Deacetylase 1 and
cell (GMCQ) downregulating Endothelin-1
Protects beta cells against
UC-MSCs miR-21 Hypoxia on Beta cells } apoptosis, alleviating ER stress [236]

(BTC-6)

and inhibiting p38
MAPK signalling
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Table 1. Cont.

MSC Source ncRNA Cargo Disease Model Admin. Way Mechanism/Effect Ref.
HRMECs in vitro Suppresses

BM-MSCs  IncRNA SNHG7 model of - endothelial mesenchymal [181]

diabetic retinopathy transmon. and tube formatlo.n

trough miR-34a-5p-XBP1 axis

Suppresses peripheral blood

inflammatory monocytes and

activation of endothelial cells
BM-MSCs miR-146a db/db diabetic mice v via inhibiting Toll-like receptor [237]

(TLR)-4/NEF-«B signalling
pathway in
peripheral neuropathy

Macrophage polarization and

UC-MSCs miR-let-7b STZ diabetic rats Topical re§olut10n Olf chronic [209]
inflammation for
wound healing

Myeloid- Pro;r.l(ijtes' wfoundlheahlrjlg in

derived IncRNA H19 STZ diabetic mice SI labetic foot uicers by [208]
MSCs upregulating PTEN
via miR-152-3p
THP-1 cells . S

MSC tsSRNA-21109 differentiated to - Alleviates SLE by inhibiting [238]

macrophage M1 polarization

macrophages

AD-MSCs: adipose-derived mesenchymal stem cells; BM-MSCs: bone marrow-derived mesen-chymal stem cells;
UC-MSCs: umbilical cord-derived mesenchymal stem cells; CCSMCs: corpus cavernosum smooth muscle cells;
human retinal endothelial cells (HRECs); HRMECs: Human retinal microvascular endothelial cells; HG: high
glucose; RA: rheumatoid arthritis; FLS: fibro-blast-like synoviocytes; STZ: streptozotocin-induced; CIA: Collagen-
Induced Arthritis; IP: intra-peritoneal; IV: intravenous; IVT: intravitreal; ID: intradermal; IA: intraarticular;
SC: subconjunc-tival; SI: skin injection; IO: intraocular.

Besides miRNAs, other ncRNAs such as IncRNAs [230,239,240] and circRNAs [187]
have been reported to exert therapeutic effects in RA. As an example, MSC-exos IncRNA
HAND2-AS] re-expression suppressed proliferation, motility, and inflammation and trig-
gered apoptosis in RA-FLS activation through the miR-143-3p/TNFAIP3/NF-kappaB
pathway [230]. Recently, Zhang et al. demonstrated that the injection of both synovial
mesenchymal cell (5-MSC)-derived exosomes or exosomes overexpressing circRNAs (Ad-
circEDIL3) reduced synovial VEGF and consequently ameliorated arthritis severity in the
CIA mouse model, by targeting the circEDIL3/miR-485-3p/PIAS3/STAT3/VEGF func-
tional module in RA [217] (Figure 3).

Besides their inherent cargo, EVs can be loaded with several cargos or chemical drugs
of interest and serve as biological delivery tools; these EVs can also be designed to target
specific tissues, which opens up the field to develop more efficiently engineered EVs.
Studies of this type are still scarce in RA disease, where, to date, only one study, developed
by Topping et al., has been published. This research identified a specific anti-reactive oxygen
species-collagen type II (Anti-ROS-CII) antibody able to target damaged arthritic cartilage
and employed EVs isolated from human neutrophils with intrinsic immune regulatory
functions and cartilage penetration as a vehicle to deliver Anti-ROS-CII into injured joints.
The incorporation of Anti-ROS-CII into EVs by sonication and their consequent systemic
administration revealed the ability to penetrate injured tissue while maintaining antibody
activity, which accelerates the attenuation of clinical and synovial inflammation [241].

4.2. Type I Diabetes Mellitus

Diabetes mellitus is a highly prevalent metabolic disease with an elevated economic
cost, mostly accompanied by cardiovascular complications and comorbidities. Two main
types of diabetes have been defined: Type 1 (T1IDM), which is autoimmune related, and
type 2. TIDM is a chronic and complex disease recognized as an autoimmune disorder,
characterized by long-term hyperglycemia due to permanent loss of insulin production



Pharmaceutics 2022, 14, 733

14 of 30

as a consequence of impaired immune tolerance to (3-cell antigens and pancreatic 3-cell
destruction [242,243]. The pathogenesis of TIDM is multifactorial and has been related to
genetic susceptibility, which predisposes individuals to abnormal immune responses to
pancreatic islets; however, 85% of patients have no family history of diabetes, so additional
factors such as environmental ones must be involved in predisposition to the disease [244].
Inflammatory infiltrates are present in the islets of Langerhans, where diverse immune cells
(CD8* T cells, B cells, CD4* T cells, NK cells, and macrophages) contribute differentially to
defined pathogenic aspects of TIDM and to generating and maintaining the autoimmune
response that characterizes the disease [245].
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Figure 3. Summary of protective, regenerative or immunomodulatory capabilities of MSC-derived
extracellular vesicles (MSC-EVs) administered in experimental models of different ADs. Several
studies on non-coding RNA (miRNAs, IncRNA, circRNA and tsRNA) have demonstated their effects
and mechanisms as therapeutic systems to ameliorate diabetic peripheral neuropathy, relieve diabetic
retinopathy, improve wound healing of diabetic ulcers, attenuate arthritis and exert anti-inflammatory
effect in systemic lupus erythematosus (SLE). Arrows indicate activation or induction, T-bars in-
dicate inhibition. Circ: circular RNA; CXCL9: Chemokine (C-X-C motif) ligand 9; IL: interleukin;
ITGAT: Integrin Subunit Alpha 1; IncRNA: long non-coding RNA; miRNA: microRNA; MMP4: ma-
trix metalloproteinase 4; MSC: mesenchymal stem cells; PTEN: Phosphatase and tensin homolog;
TRL4: Toll-like receptor 4; tsRNA: transfer RNA-derived fragments; VEGEF: vascular endothelial
growth factor. Created mainly in biorender.com.

Exosomes exert two opposite effects, beneficial and detrimental, upon TIDM. Firstly,
their ability to interact with immune cells such as T- and B-cells through their cargo
make them immune system activators that can promote pancreatic 3-cell apoptosis or
induce inflammatory effects, conferring a pathogenic role in the onset of TIDM [246,247].
Conversely, recent advances attribute valuable properties for exosomes, showing them to
be excellent candidates for TIDM treatment due to their modulatory effects on the immune
cell response [212,231].

In this regard, developing MSC-derived exosomal therapies has important advantages
in T1DM, since MSCs have demonstrated profound immunomodulatory effects and a
potent regenerative capacity, as stated above [248,249]. In line with this, a randomized
controlled trial developed several years ago in TIDM patients showed the potential of
MSCs in preserving (3-cell function, where patients were treated with autologous MSCs,
obtaining promising results for their use in humans [250]. After years of accumulative
research and studies, EVs derived from various types of MSCs have emerged as key players
in T1DM therapy [212]. Recently, MSC-EVs showed a marked attenuation of the immune
response by inhibiting antigen-presenting cell activation and suppression of Th1l and Th17
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cell development [251]. Furthermore, exosomes from menstrual-blood-derived MSCs were
intravenously injected in STZ diabetic rats, producing islet regeneration through pancreatic
and duodenal homeobox 1 pathways [15]. One of the latest studies also revealed the
attenuation of diabetes in a TIDM mice model by using exosomes from UC-MSCs. This
study showed that exosome administration produced an increase in insulin production and
an improvement in histological structure, showing [3-cell regeneration [252]. Other studies
investigated the effect of MSC-EV therapies in diabetes-induced cognitive impairment,
in which exosomes derived from BM-MSCs revealed improved cognitive capacity in STZ
mice, reversing neuronal and astroglial damage [253].

Exploring the use of MSC-EVs for therapy in more depth, a more precise and well-
known mechanism of action of EV-mediated treatment is focused on their cargos [254].
During the last three years, increasing studies have described several exosomal ncRNA
cargos from MSCs, mostly miRNAs, mediating the reduction of inflammation [219], pro-
moting [3-cell proliferation [255], or ameliorating different diabetic complications such as
erectile dysfunction [232], peripheral neuropathy [231], cognitive impairment [256], diabetic
retinopathy and retina degeneration [181,220,221,233], or diabetic nephropathy [234,235]).
In a recent study by Chen et al., exosomal miR-21 from human UC-MSCs protected (3-cells
from hypoxia-induced apoptosis by inhibiting p38 MAPK signaling, alleviating ER stress,
and improving cell survival [236]. Other ncRNAs, such as the MSC-derived exosomal
IncRNA SNHG?, have demonstrated a relevant role in diabetic retinopathy. LncRNA
SNHG? reduces the endothelial-mesenchymal transition and tube formation in cell cul-
ture of retinal microvascular endothelial cells inhibiting the miR-34a-5p-XBP1 axis [181]
(Figure 3).

Certain novel therapies involve engineering EV cargo in MSCs to enhance their benefi-
cial effects or for specific targeting. An example of this is miR-146a for diabetic peripheral
neuropathy treatment, transfected in BM-MSCs to enrich exosomes with this miRNA
compared with natural exosomes, showing attenuation of diabetic-induced endothelial
dysfunction, improvement of neurovascular function, and exerting immunosuppressive
effects greater than those observed in naturally secreted exosomes [237].

One serious complication of diabetes for which effective treatment is lacking is the
formation of chronic foot ulcers and delayed wound healing, which affects 15-25% of
diabetic patients and increases the risk of gangrene, amputation, and death [257,258]. Vas-
cular insufficiency is one of the principal causes of chronic non-healing cutaneous wounds,
although compromised immunological status, advanced age, and chronic mechanical stress
also contribute to poor wound healing [259]. Modulating the inflammatory response could
represent a promising strategy to promote proper wound healing. Regenerative medicine
strategies using MSCs have good potential as alternative approaches for chronic inflam-
mation treatment. Several studies have shown the ability of MSCs to relieve inflammatory
responses and accelerate skin wound healing [260,261]. Beyond this, MSC-EVs and their
cargo have shown beneficial effects in preclinical animal studies for regeneration processes
of diabetic foot ulcers, intervening in inflammation, angiogenesis, re-epithelialization, and
remodeling stages [125,209]. An example of their regenerative power is the study from
Yang et al. in which they design an engineered combination of human UC-MSC-exos and
Pluronic F-127 hydrogel to improve wound healing in diabetic rats, revealing an acceler-
ated wound closure rate, enhanced regeneration of granulation tissue, and up-regulated
expression of VEGF and TGF{3-1 [210]. In addition, recent studies have shown that IncRNA
H19 shuttled by MSC-exos or by mimetic nanovesicles has a potent effect on wound heal-
ing [208,262]. Specifically, IncRNA H19 prevents apoptosis and inflammation of fibroblasts
by inhibiting miR-152-3p and promoting PTEN expression [208].

4.3. Systemic Lupus Erythematosus

SLE is a complex multisystemic AD extremely heterogeneous with a wide spectrum
of different combinations of clinical manifestations, accumulation of laboratory and im-
munological abnormalities, and a variable disease progression and outcome. Using, for the
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most part, the American College of Rheumatology criteria (1982 or 1997), overall incidence
rates for SLE vary from approximately 0.3-23.7 per 100,000 person-years, while prevalence
rates have ranged from 6.5-178.0 per 100,000 [263]. The etiology and pathogenesis of SLE
are accompanied by immune disorders including abnormal proliferation, differentiation,
activation, and dysfunction of immune cells. Chronic inflammation causes tissue and organ
damage, with lupus nephritis (LN) being the most common and serious manifestation in
SLE [264,265]. Determining an SLE patient-tailored preventive strategy, therefore, remains
an urgent problem to be resolved.

Current treatment strategies for SLE are focused mainly on controlling and mitigating
activity flares, and MSC transplantation is regarded as a novel SLE treatment. Several
studies have established that MSCs can attenuate the adverse effects of immunosuppressive
drugs [266,267] and that allogeneic MSCs transplantation has brought new hope of curing
severe SLE patients [268,269]. Chun et al. have demonstrated that transplantation of MSCs
ameliorates SLE and upregulates B10 (IL-10-producing regulatory B) cells through TGF-
1 knockdown [270]. In addition, Liu et al. have confirmed that the transplantation of
human-placenta-derived MSCs alleviates renal injury and reduces inflammation in a mouse
model of LN [271]. Another recent study indicates that the transplantation of AD-MSCs
could significantly inhibit autoimmune progression in MRL/Ipr mice, and the efficacy of
AD-MSCs was comparable to that of cyclophosphamide [272]. Yuan et al. showed that the
transplantation of allogenic UC-MSCs induced FLT3L and CD1c + DCs in SLE patients,
suppressing inflammation in lupus by up-regulating tolerogenic DCs [273]. Moreover,
Choi et al. showed that MSC transplantation restored miRNA expression-associated lupus
disease and Th1/Th2 ratios in a murine model of SLE [274]. Most importantly, mounting
clinical studies have shown that allogenic AD-MSC transplantation was associated with
good safety and efficiency in reducing disease activity and urine protein excretion [275];
however, the greatest proteinuria improvement was observed at 1 month and 6 months on
disease activity indexes [268]. Moreover, more than a single dose of AD-MSCs may thus be
required to maintain long-term remission of LN [276].

MSCs have immunomodulatory effects, mainly through cell-to-cell contact and through
MSC-EV as a paracrine pathway [16]. EVs cargoes such as DNAs, mRNAs, miRNAs, IncR-
NAs, and circRNAs have been established to play crucial roles in regulating autoimmunity
and are associated with SLE activity [92,277]. Accumulating evidence has implied that
MSC-EV-derived ncRNAs play an important role in the pathogenesis of inflammatory
and ADs [16,25,278]. Several recent studies have elucidated that exosome-deriving miR-
NAs, circRNAs, and other ncRNAs play important roles in SLE pathogenesis [92,176,279].
Although MSC therapies have shown promise in models of SLE-related pathologies, the
function and mechanism of MSC-exos are still unclear. Eirin et al. identified the potency of
EVs isolated from AD-MSCs for ameliorating renal injury. Intrarenal delivery of MSC-EVs
decreased renal inflammation, increased the number of reparative macrophages, and up-
regulated the expression of IL-10, suggesting that anti-inflammatory properties underpin
the protective effects of EVs [280]. Another study demonstrated that human MSCs-exos
attenuate alveolar hemorrhage through increasing M2 macrophage polarization in lupus
mice [281]. In addition, a recent study by Dou and colleagues confirmed that MSC exosomal
tsRNA-21109 alleviates SLE by inhibiting macrophage M1 polarization [238] (Figure 3).
Moreover, LN is the most common and severe organ injury in SLE. Several works showed
ncRNAs from MSC-exos as encouraging therapy for renal damage. Cao et al. demonstrated
that MSC-exos ameliorates ischemic acute kidney injury and promotes tubular repair by
targeting cell cycle arrest and apoptosis through the miR-125b-5p /p53 pathway [282].

5. Conclusions, Challenges, and Limitations Associated with MSC-EVs and MSC-EVs
ncRNA Cargos

In recent years, the field of MSC-based therapies for AD has experienced a revolution-
ary change in perspective, thanks to the use of MSC-EVs, which overcomes the limitations
observed in the use of MSCs but conserves their high capacity for immunomodulation
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and regenerative properties. The use of MSC-EVs offers several advantages: As a cell-free
therapy, they provide stability and safety, avoiding tumorigenesis, genetic mutability, and
immunogenicity compared to their parent MSCs, and allowing several modifications to
their surface and cargo, which make them a promising potential treatment for ADs (Table 2).
Furthermore, studies are increasingly focusing on EVs cargo for the development of tar-
geted therapies, revealing the mechanisms by which MSC-EVs exert their beneficial effect.
In this sense, ncRNAs are the gold players to become a powerful strategy since they
regulate many biological processes and mediate intercellular communication, regulating
gene expression.

Table 2. Advantages and limitations of MSC and MSC-EVs for therapy in autoimmune diseases.

MSCs MSC-EVs

Repair and regeneration of injured cells and
tissues (i.e., cartilage, bone, skin ... )

Maintainance of MSC regenerative potential

Immunoregulatory properties modulating B

Advantages

cells, T cells, NK cells, DCs, promoting Effectors of MSC immunoregulatory properties
macrophage polarization, etc . ..

Low immunogenicity Avoidance of tumorgeneity in transplanted chondrocytes
Suppression of toxicity and immunogenicity in target
organs/tissues (peripheral nerves, joints, eyes, skin ... )
Absence of genetic mutability
Modification of EV surface for targeting specific
organs/tissues (i.e., skin, eye ... )

Allowing specific cargo loading for enhancing the
regenerative power in wound healing, degenerated nerve
or cartilage
Increase of immunomodulatory properties by
pre-conditioning MSCs to enhance quantity of secreted EVs
Longer circulating half-life and more biocompatible
compared to liposomes and polymeric nanoparticles
High stability and resistance to freeze—thaw cycles
Quick and effective sterilization
Ability to cross the blood-brain barrier and freely circulate
through the microvasculature

Limitations

Perpetuation of MSCs in the body after disease

Poor cell survival Absence of standarized methods for characterization
Immune rejection Lacking scalable production and purification
High cost production Requiring an improvement in the targeting strategies
Needing for a better knowledge of half-life biodistribution,
side effects and mechanisms of action

Loss of stemness induced by time/aging
Undesired differentiation that can produce
ossification, calcification and tumorigenesis

Inability to cross the blood-brain barrier and

trapping in organs such as liver or lung

DC: dendritic cell; EV: extracellular vesicle; MSC: mesenchymal stem cell; NK: natural killer.

Nevertheless, the use of MSC-EVs and their ncRNA cargos is still in the initial re-
search and development stage and faces major obstacles and limitations. A principal
challenge to overcome is the optimization of methods for MSC-EV characterization, high-
scale production, and purification, with generalized and standardized protocols. Moreover,
improvement is needed in MSC-EV targeting, which requires knowledge of disease mecha-
nisms, forcing a better understanding before an EV treatment strategy can be developed.
Additionally, the half-life and biodistribution of EVs in the body need further investigation
and exploration through imaging techniques since these properties are affected by the
different routes of administration. Furthermore, ncRNA cargo raises questions that remain
unanswered, such as whether the simultaneous transfection of several miRNAs or cargos



Pharmaceutics 2022, 14, 733 18 of 30

into MSC-EVs would be more effective or increase the side effects, or the potential effects
of cell-free therapy depending on different pharmacological pre-treatments.

Last but not least, the effects of MSC-EVs, including exosomes, in RA, T1DM, and
SLE remain unclear, although they have been demonstrated to possess similar biological
effects as their parent MSCs. For this reason, despite their potential as in vivo transport
carriers, before the application of MSC-EVs into clinical practice, further research with
animal models and clinical assays needs to be addressed to test the safety and efficiency of
this novel cell-free therapy for ADs.
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