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Systemic lupus erythematosus (SLE) is a common autoimmune connective tissue disease
with unclear etiology and pathogenesis. Mesenchymal stem cell (MSC) and MSC derived
extracellular vesicles (EVs) play important roles in regulating innate and adaptive immunity,
which are involved in many physiological and pathological processes and contribute to the
immune homeostasis in SLE. The effects of MSCs and EVs on SLE have been drawing
more and more attention during the past few years. This article reviews the
immunomodulatory effects and underlying mechanisms of MSC/MSC-EVs in SLE,
which provides novel insight into understanding SLE pathogenesis and guiding the
biological therapy.
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INTRODUCTION

SLE is a systemic autoimmune disease with multiple organs and multiple systems damages. It is
characterized by abnormal activation of immune cells, abundant production of pathogenic
autoantibodies and immune complexes deposition (1). The etiology and pathogenesis of SLE are
complex and accompanied by immune disorders including abnormal proliferation, differentiation,
activation and dysfunction of T cells, mononuclear-macrophage cells as well as B cells. Long term
autoimmune disorders and sustained inflammation eventually cause tissue and organ damages (2, 3).
Lupus nephritis is the most common and severe organ injury in SLE (4). At present, glucocorticoids
and immunosuppressants are traditional treatments for SLE. However, there are still many
refractory patients who are difficult to achieve clinical remission with high mortality. It brings a
great economic burden and psychological pressure to SLE patients (5). As a result, investigating the
optimal treatment strategy for SLE patients is still an urgent problem to be solved. Here, we provide
an updated review of currently available information regarding dysregulated immune cells and
mechanical molecules involved in SLE pathogenesis, which would be promising for investigating
new biological approaches to SLE treatment.
org September 2021 | Volume 12 | Article 7148321
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Mesenchymal stem cells (MSCs) are pluripotent stem cells
that are widely distributed in human body, such as bone marrow
(BM) (6), umbilical cord (UC) (7), umbilical cord blood (UCB)
(8), peripheral blood (9), placenta (PL) (10), adipose tissues (AT)
(11), and dental pulp (DP) (12). It has been demonstrated that
MSCs derived EVs possess strong biological activity similar to
MSCs (13). MSCs-EVs exert immunomodulatory effects by
inducing immune cells differentiation into cells with more
anti-inflammatory or tolerant phenotype (14). MSC-EVs
promote the chemotaxis of anti-inflammatory noncoding
RNAs towards injured tissues and participate in regulating
inflammatory and immune response to better enhance the
healing process (15). Bone marrow derived mesenchymal stem
cells (BM-MSCs) are found to suppress the proliferation of
cancer cells and induced dormant states (16). MSCs have self-
renewal, migration and immunosuppression functions under
physiological conditions. However, some MSCs are
dysregulated in immune microenvironment under pathological
conditions. However, tumor-derived exosomes have been
demonstrated to induce phenotypic and functional changes of
MSCs, which can convert into cancer-associated cells (17). MSCs
senescence can be found in SLE patients or lupus mice models.
Changes of MSCs morphology and microstructure occur at the
early stage in SLE patients with impaired immunosuppressive
effects (18). Sun et al. have found that MSCs from SLE patients
exhibit structural and functional defects, including slow growth,
earlier aging and decreased vitality (18). In addition, a previous
study has suggested abnormalities of multiple signaling pathways
are involved in regulating actin cytoskeleton and cell cycling in
BM-MSCs from SLE patients, such as MAPK and BMP/TGF-b
signaling pathways (19). SLE patients exist defective immune
regulation of BM-MSCs from SLE patients, characteristic of
down-regulated microRNA let-7f (20). The study by Che N
et al. has shown that BM-MSCs from lupus-like mice and SLE
patients are deficient in suppressing B cell proliferation and
differentiation (21). A previous study has shown that autologous
MSCs from lupus patients are not effective in treating disease.
However, whether it is possible to inhibit B cell proliferation
seems to distinguish between effective MSCs and ineffective
MSCs (22).

MSCs have immunomodulatory effects mainly through
intercellular contact and paracrine pathways. MSC-EV is the
main way for them to exert paracrine effects (23). MSC-EVs have
stable membrane-like structure with a phospholipid bilayer. EVs
contain substantial bioactive factors, such as nucleic acids,
proteins and lipids. Some EVs delivering DNAs, mRNAs,
circRNAs and lncRNAs have been demonstrated to play
critical roles in regulating autoimmunity. MSC-EVs transfer
bioactive molecules into the recipient cells mainly through
three ways, namely, endocytosis, membrane fusion and specific
receptor-ligand recognition. MSC-EVs can promote the
transformation of inflammatory cell phenotypes (like M1
macrophages, DCs, Th1 and Th17 cells) into immunosuppressive
phenotypes (like M2 macrophages, tolerance DCs and regulatory
T cells) (24, 25). Accumulating studies have implicated that
EVs derived non-coding RNAs play an important role in the
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pathogenesis of inflammatory and autoimmune diseases (24, 25).
MSC-EVs have similar biological effects to MSCs, which are
promising tools for tissue engineering and regenerative medicine
(15, 26). MSC-EVs delivering molecules might not only be used
as diagnostic biomarkers but therapeutic targets. Up to date, little
has been known about the precise role of MSC-EVs derived
bioactive molecules in SLE diseases.

MSC-EVs are important carriers for material transport and
information exchange between MSC and other cells (27, 28).
Exosomes are the most common type of EVs. They regulate T
cells-, B cells- and other immune cells-mediated immune and
inflammatory reactions (29, 30). MSC exosomes (MSC-Exo)
encapsulating lipids, DNAs, RNAs and proteins are essential
for intercellular communications (31). The role of MSC-Exo
depends on its transferring bioactive molecules, such as proteins
and RNAs (32). As a nano-scale natural carrier, exosomes can
encapsulate and deliver bioactive substances produced by
immune cells or tissue cells, such as nucleotides, peptides and
lipids (33–35). MSC-Exo shows great potentials in intercellular
information change between cells. Recently, non-coding RNAs
have become a hot spot in oncology, rheumatology and other
fields, such as circRNAs, lncRNAs, and miRNAs (36–40).
Emerging evidence has elucidated that exosome-deriving
miRNAs, circRNAs and other non-coding RNAs play
important roles in SLE pathogenesis (41, 42). Therefore, non-
coding RNA may serve as new diagnostic biomarkers or
therapeutic targets for SLE. In this review, we have
summarized currently available studies on the role of MSCs
and MSCs-EVs in autoimmune diseases, primarily including
SLE. These findings are useful for understanding SLE
pathogenesis and exploring novel biomarkers for SLE diagnosis
and treatment.
IMMUNOREGULATORY EFFECTS OF
MSCs AND MSC-EVs ON T CELLS

Immune regulation dysfunction is the main cause for SLE (43).
In particular, T cells play a key role in SLE pathogenesis. It has
been illustrated that the interaction between MSCs and T cells is
essential for maintaining immune balance. Various soluble
immune regulatory factors, growth factors, non-coding RNA,
proteins are involved in the interaction process through
paracrine action (44). MSCs inhibit T cell proliferation and
activation through EVs in a dose-dependent manner (45, 46).
Accumulated studies have shown BM-MSCs inhibit T cells
proliferation and differentiation by preventing them from
entering S phase and G0/G1 phase of the cell cycle (47, 48).
Fetal liver-derived MSCs (FL-MSCs) inhibit CD4+ and CD8+ T
cells response and promote CD4+CD25+Foxp3+Tregs response
(Table 1) (49). MSCs can induce T cells differentiation from pro-
inflammatory state to anti-inflammatory state mainly by
inhibiting lymphocyte proliferation and pro-inflammatory
cytokines production (57). Thus, the extensive wealth of in-
vitro data has suggested MSCs exert immunomodulatory effect
on T cells and might participate in maintaining the balance of
September 2021 | Volume 12 | Article 714832
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immune microenvironment. It has been documented that MSCs
reduce the activation of antigen presenting cells (APCs) by
producing soluble factors, such as indoleamine-2,3-dioxygenase
(IDO), prostaglandin E2 (PGE2) and IL-10. MSC promotes the
proportion of regulatory T (Treg) cells and inhibits the
generation of T follicular helper (Tfh) cells through an APC
pathway (58). It has been well established that MSCs can induce
T cells differentiation into Treg and Th2 cells but inhibit Th17
and Tfh cells differentiation and immune response. Accordingly,
MSCs might serve as a useful treatment strategy for autoimmune
diseases, including SLE.

MSC-EVs exert immunomodulatory effects similar to MSCs.
MSC-EVs inhibit T cell proliferation and Th1 differentiation by
regulating glycolysis and cytokine signaling pathways (39). A
previous study has suggested MSC-EVs promote CD4+ T
lymphocytes differentiation toward a regulatory phenotype by
EVs-encapsulating miR-23a-3p and post-transcriptionally
regulated TGF-b receptor 2 in T cells (Table 1) (50). MSC-Exo
suppresses the proliferation of T cells and induce cell cycle arrest
through p27kip1/Cdk2 signaling pathway (Table 1) (51). MSC-
Exo exerts immunosuppressive effects in autoimmune uveitis
mice model by reducing T cell subsets and other inflammatory
cells infiltration (59). Besides, MSCs-Exo enhances Treg
generation in vitro and vivo (58). BM-MSC-EVs can prevent
naive T cells differentiation into effector T cells and their
activation (60). MSC-EVs promote the apoptosis of activated T
cells, inhibit self-reactive lymphocytes proliferation, and produce
more Tregs by increasing IL-10 and TGF-b (13). These findings
have suggested the biological functions of MSC-EVs are similar
to MSC that can regulate immune cells growth and function.
Accordingly, MSC-EVs might be a promising cell-free therapy in
autoimmune diseases.

MiRNAs are endogenous single-stranded non-coding RNAs
that regulate approximately 30-70% of human genes. They play
Frontiers in Immunology | www.frontiersin.org 3
an important role in innate and adaptive immune responses by
influencing cell proliferation, differentiation and apoptosis (61).
Accumulated data has shown that miRNAs disruption and
dysfunction can interfere with immune response, stimulate
inflammatory cytokines release, initiate autoantibodies
production and promote autoimmune diseases occurrence,
such as SLE (62, 63). The expression of miR-146a in SLE
patients serum exosomes is significantly decreased, which can
promote MSCs senescence by targeting TRAF6 and inhibiting
NF-kB signaling pathway activation (Figure 1) (64, 65). Besides,
exosomal miR-146a plays a key role in regulating innate
immunity by targeting toll-like receptors (TLRs), tumor
necrosis factor (TNF)-associated family (TNAF), and
interleukin-1 receptor-associated kinase 1 (IRAK1) (Table 1)
(66). Accordingly, circulating exosomes encapsulating miR-146a
may be a key biomarker for SLE. The study by Bolandi Z et al. has
suggested adipose-derived mesenchymal stem cell exosomes
(AD-MSC-Exo) miR-10a promote the differentiation of Th2
and Treg from naive CD4+ T cells (52). AD-MSC-Exo miR-
10a can regulate Th17 and Treg differentiation by regulating
Foxp3+ expression through TGF-b pathway (Table 1) (52).
Taken together, MSCs carry molecular information of specific
source cells and participate in intercellular communications.

Imbalance of Th1, Th2, Th17 and Treg results in
inflammatory response and immune disorders in SLE (20, 67).
Defective clearance of apoptotic cells (ACs) has been considered
to be involved in the pathogenesis of SLE. It has been shown that
human umbilical cord (UC) MSC possessed the ability to engulf
ACs and then enhanced the immunosuppressive function by
inhibiting T cell proliferation and DC differentiation through the
COX2/PGE2/NF-kB signaling pathway (Table 1) (53). MSCs
have significant improvements of hematological ingredient by
upregulating Treg and downregulating Th17 (68). Interestingly,
BM-MSCs and UC-MSCs from SLE patients have a defect in
TABLE 1 | Mechanism of action with MSCs and EVs on T cells.

Cell type Immune cell Mechanism Effect Reference

FL-MSCs CD4+CD8+T cell and
Treg cell

– inhibit CD4+T cells, CD8+T cells and promote
Treg cells

(49)

MSC Treg, Tfh through an APC pathway promotes Treg cells and inhibits the generation
of Tfh

(49)

MSC-EVs Th1 cell regulating glycolysis and cytokine signaling pathways inhibits T cell proliferation and Th1
differentiation

(39)

MSC-EVs CD4+T cell EVs-encapsulating miR-23a-3p and post-transcriptionally regulated
TGF-b receptor 2 in T cells

suppressive Th1 differentiation (50)

MSC-Exo T cell P27kip1/Cdk2 pathway suppressive activation T cell proliferation and
cell cycle arrest

(51)

MSC-EVs T cell increasing IL-10 and TGF-b promote T cells apoptosis and inhibit
proliferation

(13)

AD-MSC
miR-10a

Th17/Treg cell regulating Foxp3+ expression through TGF-b pathway promote the differentiation of Th2 and Treg
from naive CD4+ T cells

(52)

UC-MSCs T cell through the COX2/PGE2/NF-kB signaling pathway inhibiting T cell proliferation and DC
differentiation

(53)

UC-MSCs T cell IFNGR1/JAK2/Stats signaling pathways, IFN-g/IDO axis suppressive T cell proliferation and promote
Treg function

(54)

AD-MSC T cell through regulating TGF-b and PGE2 regulate the Th17/Treg balance (55, 56)
September 2021 | Volume 12 | Art
Tfh, T follicular helper; MSC, Mesenchymal stem cells; MSC-EVs, MSC derived Extracellular Vesicles; MSC-exo, MSC derived Exsome; FL-MSC, Fetal liver-derived Mesenchymal stem
cells; BM-MSC, bone marrow Mesenchymal stem cells; UC-MSC, umbilical cord Mesenchymal stem cells; AD-MSC, adipose MSC; APC, antigen presenting cells; IL-10, interleukin 10;
IDO, Indoleamine 2,3-dioxygenase; PGE2, Prostaglandin E2; TLR4, Toll-like Receptor 4; Treg, Regulatory T; Th1, T-helper 1; Th17, T-helper 1.
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IDO activity and secretion, which is an enzyme that mediates
tryptophan degradation into immunosuppression metabolites
(54). However, allogeneic UC-MSC can produce extremely
amount of IDO to inhibit T cell proliferation through
IFNGR1/JAK2/Stats signaling pathway (Table 1) (54).
Moreover, MSC restores the immune balance via regulating
TGF-b and PGE2 and enhancing Treg/Th17 cells ratio in
lupus mice (55, 56). In SLE patients, allogeneic UC-MSCs
inhibit T cells response through IFN-g/IDO axis (69), and
induce more inducible Treg (iTreg) by generating anti-
inflammatory cytokines, such as TGF-b1 (70, 71). Besides,
BM-MSCs can alleviate lupus nephritis and improve mice
survival rate by effectively inhibiting follicular helper T cell
(Tfh) differentiation and IL-21 generation (72, 73).
REGULATION OF MSCs AND
MSC-EVs ON B CELLS

Abundant activation and dysregulation of B cells is closely
related to SLE pathogenesis. Pathogenic autoantibodies from B
cells participate in SLE pathogenesis and mediate tissue damage,
Frontiers in Immunology | www.frontiersin.org 4
which are also involved in presenting antigens to self-reactive T
cells (74). The activation of B cells leads to the production of a
large number of autoreactivity autoantibodies involved in the
disease process of SLE, including BAFF. A previous study has
demonstrated that excessive expression of miR-152-3p is
observed in SLE, resulting in increased BAFF Expression in
SLE B-Cells by downregulating KLF5 (75). The study by Ma X
et al. has shown that BM-MSC suppressed the excessive
activation of B-cells via inhibiting BAFF production in MRL/
lpr mice (Table 2) (76). Belimumab, an anti-BAFF antibody, has
already been used as a treatment target for SLE, which is
approved by FDA for Lupus in 2011. A published study has
reported that MSCs inhibit the proliferation of B lymphocytes by
keeping the cell cycle in the G1 and G0 phases and impair plasma
cell formation and immunoglobulin secretion (81, 83). Besides,
MSCs can indirectly inhibit B cell differentiation, maturation,
and plasma cell differentiation as well as antibody production
through directly contacting with T cells (Table 2) (77).
Moreover, MSCs inhibit the proliferation, excessive activation
and maturation of B cells by depleting tryptophan in the
inflammatory microenvironment of human body (Table 2) (78).
Most interestingly, MSCs enhance increased regulation B (Breg)
FIGURE 1 | Composition and mechanism of immunological tolerance of MSC-EVs in systemic lupus erythematosus. MSC-EVs are spheroidal shaped and two-layer
lipid particles containing various types of protein, lipids, DNAs, non-coding RNAs, miRNAs, and mRNA, which cause genetic information exchange by various of
signal pathway and reprogramming of the recipient cell. MSC-EVs can suppress the differentiation and proliferation of B cell by PI3K-AKT pathway, and reduce
production of IL-10. Similarly, T cells play the suspensive role on the proliferation and maturation, while reduce production of Th17 and Th1, and improve function
of Treg and Th2 through the TGF-b/NF-kB pathway. EVs can suppress the proliferation and maturation of DCs and induce tolerable DCs with low expression of
costimulatory makers. Macrophages can transform to anti-inflammatory M2 phenotype after treating by MSC-EVs through the PI3K/AKT pathway. EVs can suppress
the proliferation, differentiation and cytotoxicity of NK cells in a TGF-b dependent manner. MSC-EVs play an important role in the pathogenesis of autoimmune
diseases, including SLE, graft versus host disease, experimental autoimmune encephalomyelitis, etc.
September 2021 | Volume 12 | Article 714832
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cell through SDF-1-CXCR7 axis, which plays a key role in
maintaining immune tolerance and inhibiting immune and
inflammatory responses (84). MSCs affect B cells chemotaxis
by inhibiting the production of immunoglobulin IgG, IgM and
IgA and downregulating related ligands expression. As a result,
MSCs regulate B cell response and mediate immune suppression,
whereas the potential molecular mechanism warrants to
be investigated.

The immunomodulatory effects of MSC on B Cells and
plasma cells are associated with EVs delivering soluble factors
(85, 86). MSC-exo inhibits the proliferation of T cells and B cells
(Table 2) (29). It has been well documented that MSC-EVs
delivering miRNA-155-5p reduce the activation of B cell cycle
progression by targeting PI3K/AKT signaling pathway(Figure 1
and Table 2) (79). Nonetheless, more studies are warranted to
further investigate the potential bioactive factors in MSC-EVs
and their precise effects on immune cells function in SLE and
other autoimmune diseases. Understanding the mechanisms of
MSC-EVs in immune regulations may help for developing new
therapeutic strategies for SLE.

It has been documented that toll-like receptor 7 (TLR7) is
overexpressed in SLE, which drives autoreactive B cells activation
and autoantibodies production through IFN-g signal pathway in
SLE (87–89). MSC enhances IL-10 production by activating the
extracellular signal-related kinase (ERK) signal but suppresses
the generation of TNF-a by downregulating TLR-7/NF-kB
signal in murine macrophages (90). Intrinsic B cells with
autoreactive B cell receptor (BCR) expression and long-lived
plasma cells continuously producing autoantibodies are essential
for the development of SLE (91). A previous study has implicated
that MSCs derived from SLE patients have significantly reduced
expression of CCL2 (21). Those MSCs prevent from the
proliferation, differentiation, and antibody secretion of B-cell
through CCL2-MST1-mTOR-STAT1 mediated metabolic
signaling pathway (Table 2) (80). Elevated expression of IL-21
in serum of SLE patients promotes B cells differentiation, which
thus leads to a large number of pathogenic autoantibodies
aggravating SLE manifestations (92). MSCs exert inhibitory
effects on the terminal differentiation of B cells through
decreasing the expression of maturation protein-1 (Table 2)
(81). In addition, human gingiva derived MSCs (GMSCs)
Frontiers in Immunology | www.frontiersin.org 5
directly suppress autoantibodies production and proteinuria
and alleviate the histopathological progression of lupus
nephritis through CD39-CD73 signaling pathway (82). Thus,
MSCs play a vital role in SLE pathogenesis by inhibiting B cells
proliferation, differentiation and activation.
REGULATORY EFFECTS OF MSCs AND
MSC-EVs ON DENDRITIC CELLS

DCs are the most important APCs, which are key cells in
defending against infection and tumor. As APCs, DCs present
exogenous antigens to secondary lymphoid tissues such as spleen
and lymph nodes. In lupus nephritis, DC infiltrates the kidney to
exacerbate inflammation. Shahir M et al. have found that MSC-
Exo induces more tolerance DCs (tol-DCs) with low expression
of costimulatory markers and IL-6, but increases the anti-
inflammatory cytokines of IL-10 and TGF-b (Figure 1 and
Table 3) (93). Moreover, the induced tol-DCs further promote
the differentiation of regulatory T cells, which play a protective
role in SLE (93). MSC pretreated with IFN-g inhibits DC
maturation, activation, and antigen uptakes (Table 3) (94).
Type I IFN is closely related to the severity of lupus nephritis,
hematopoietic and central nervous system symptoms of SLE
patients. Plasmacytoid DCs (pDCs) are considered to be the
main source of type I IFN. Apart from pDCs, T cells, B cells and
NK cells are also involved in IFN production in SLE (97).
However, MSCs can inhibit the generation and function of
pDCs (98). Accordingly, MSCs are ideal therapeutic way for
SLE patients due to their inhibitory effects on pDCs and type I
IFN. The regulatory effects of MSCs on DCs make them as
promising treatment strategies for SLE patients.

Increasing studies have suggested the modulatory effects of
MSC-EVs on immune cell functions. MSC-Exo transferring
miRNA-155 and miRNA-146 have been found to regulate
endotoxin-induced inflammatory response in DCs (99).
Wang Y et al. have demonstrated that miR-142-3p was highly
expressed in SLE, which induced pro-inflammatory moDCs
involved in SLE pathogenesis (100). MSC-EVs are capable of
attenuating DCs maturation and function. It has been found that
some MSC-EVs derived miRNAs can decrease the expression of
TABLE 2 | Mechanism of action with MSCs and EVs on B cell.

Cell type Immune cell Mechanism Effect Reference

BM-MSC B cell inhibition of BAFF production suppress the excessive activation of B-cells (76)
MSCs B cell directly contacting with T cells inhibit B cell differentiation, maturation, (77)
MSCs B cell by depleting tryptophan in the inflammatory

microenvironment of human body
inhibits the proliferation, excessive activation
and maturation of B cells

(78)

MSC Breg cell through SDF-1-CXCR7 axis increased regulation B (Breg) (77)
MSC-EVs
miRNA-155-5p

B cell targeting PI3K/AKT signaling pathway inhibit activation of B cell (79)

MSC B cell increased expression of CCL2 by CCL2-MST1-mTOR-STAT1
mediated metabolic signaling pathway

prevent inhibition differentiation, proliferation,
and antibody secretion of B-cell

(80)

MSC B cell inhibit expression of maturation protein-1 inhibit B cells terminal differentiation (81)
GMSCs B cell targeting of CD39-CD73 signaling pathway suppressing B cells and produce autoantibodies (82)
September 2021 | Volume 12 | Art
MSC, Mesenchymal stem cells; BM-MSC, bone marrow Mesenchymal stem cells; GMSC, gingiva derived MSCs; SDF-1-CXCR7, Stromal-derived factor-1 and its receptor C-X-C
chemokine receptor-7; Breg, regulation B cell; CCL2, chemokine CC motif ligand 2; CCL2-MST1-mTOR-STAT1, chemokine CC motif ligand 2-mammalian Sterile 20-like kinase 1- media
Time of Repair-signal transducerand activator of transcription 1.
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mature markers CD83, CD38 and CD80 and proinflammatory
cytokines (IL-6 and IL-12p70) but promote the expression of
anti-inflammatory factors (TGF-b1 and IL-10) (Figure 1 and
Table 3) (95).

A number of studies have shown that allogeneic BM-MSCs
inhibit SLE inflammatory response by upregulating tolerance
DCs. After transplantation of allogenic UC-MSCs, peripheral
blood CD1c+ DCs and serum FLT3L can be significantly up-
regulated in SLE patients, suggesting that UC-MSCs are useful
for SLE treatment by inducing increased resistant CD1c+ DCs
(96). Nonetheless, more future studies are warranted to elucidate
the underlying mechanism involved in MSCs and DCs
interactions in SLE.
REGULATORY EFFECTS OF MSCs
AND MSC-EVs ON NK CELLS

NK cells primarily mediate natural immune response and also
play a crucial role in the pathogenesis of SLE (Figure 1). In SLE
patients, the number of NK cells is significantly reduced, whose
cytotoxic activity and cytokine profile are impaired. NK cells
with higher expression of granzyme B are observed in active SLE
patients, which can be further enhanced by IL-15 (101).
Interactions between MSCs and NK cells are necessary for
reducing NK cytotoxicity (102). A published study has
confirmed that MSCs inhibit the activity of NK cells by
regulating IDO and PGE2 (Table 4) (103, 104). BM-MSCs can
inhibit NK cell proliferation induced by IL-12 and IL-21 but
upregulate IFN-g, IFN-a, perforin and granzyme in NK cells
Frontiers in Immunology | www.frontiersin.org 6
(Table 4) (105, 106). Besides, NK cells also exert regulatory
effects on MSCs. NK cells promote MSCs recruitment and ROS
production, which can downregulate MSCs activity (109).
Interestingly, the sorted TLR4-positive MSC (TLR4+MSC) has
a strong inhibitory effect on NK cells by regulating the receptor
NKG2D (107), suggesting the pivotal immunomodulatory effects
of MSCs on NK cells.

Accumulating data has implicated that MSC-EVs inhibit NK
cells proliferation by regulating G0 and G1 cell cycle phases (99).
Exosomes from fetal liver MSCs (FL-MSCs) inhibit the
proliferation, activation and cytotoxicity of NK cells by
regulating TGF-b (Table 4) (108). Activin A is a member of
the TGF-b superfamily. It has been demonstrated that UC-MSC
produces a large amount of activin A, which inhibits IFN-g
production by downregulating T-bet in NK cells (110). However,
whether MSC-EVs protect against SLE by inhibiting NK cells
proliferation and function warrants to be further studied in the
future. It is lacking substantial evidence to support the
immunomodulatory effect of MSC-EVs on NK cells in lupus,
either in animal models or in clinical studies. The precise effect
and underlying mechanism of MSCs/MSC-EVs on NK cells in
SLE warrant to be investigated in more future studies.
REGULATORY EFFECTS OF MSCs AND
MSC-EVs ON MACROPHAGES

Imbalance of M1/M2 polarization and abnormal activation of
macrophages are involved in the pathogenesis of SLE.
Macrophages are responsible for clearing ACs. Increased ACs
TABLE 4 | Mechanism of action with MSCs and EVs on NK cell.

Cell type Immune cell Mechanism Effect Reference

MSC NK cell regulating indoleamine-2, 3-dioxygenase (IDO) and
prostaglandin E2 (PGE2)

inhibit the activity of NK cells (103, 104)

BM-MSCs NK cell inhibit IL-12 and IL-21 Suppression NK cell proliferation but increase IFN-g
and IFN-a production

(105, 106)

TLR4+MSC NK cell – inhibitory effect on NK cells and the receptor NKG2D (107)
FL-MSC-EXO NK cell regulating TGF-b inhibit the proliferation, activation and cytotoxicity of

NK cells
(108)
September 2021 | Volume 12 | Art
MSC, Mesenchymal stem cells; FL-MSC, Fetal liver-derived Mesenchymal stem cells; BM-MSC, bone marrow Mesenchymal stem cells; UC-MSC, umbilical cord Mesenchymal stem
cells; IDO, Indoleamine 2,3-dioxygenase; PGE2, Prostaglandin E2; TLR4, Toll-like Receptor 4; NK, Natural killer; TLR4+MSC, TLR4-positive MSC; IL-12, interleukin 12; IL-21, interleukin 21;
NKG2D, type II integral membrane protein; IFN-g, interferon-g ; IFN-a, interferon-a.
TABLE 3 | Mechanism of action with MSCs and EVs on DC cell.

Cell type Immune cell Mechanism Effect Reference

MSC-Exo tol-DCs induces more tolerance DCs (tol-DCs) with low expression of
costimulatory markers

increased anti-inflammatory cytokines IL-10 and TGF-b
expression but decreased IL-6 expression, promotes the
differentiation of regulatory T cells

(93)

MSC DC Combine with IFN-g inhibits DC maturation, activation, and antigen uptakes (94)
MSC-Evs DC expression of anti-inflammatory factors (TGF-b1 and IL-10)

and reduce the generation of proinflammatory cytokines (L-6
and IL-12p70)

attenuate DCs maturation and function (95)

UC-MSCs CD1c+ DCs upregulating serum FLT3L Increased expression of CD1c+ DCs (96)
MSC, Mesenchymal stem cells; MSC-EVs, MSC derived Extracellular Vesicles; MSC-Exo, MSC derived Exsome; UC-MSC, umbilical cord Mesenchymal stem cells; IL-10, interleukin 10;
TGF-b1, transforming growth factor-b1; DC, Dendritic cells; NK, Natural killer; IFN-g, interferon; IL-6, interleukin-6.
icle 714832
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due to dysregulated macrophages will activate autoreactive B
cells, thereby leading to abundant autoantibodies and immune
complexes deposition in multiple organs and tissues (111). The
polarization and activation of macrophages are different
depending on certain microenvironmental conditions. It has
been well established that MSCs effectively weaken the
phagocytosis and antigen presentation of macrophages.
Besides, MSCs can induce macrophage polarization to M2
phenotype through TGF-b/Akt/FoxO1 pathway (Table 5)
(112). Similarly , BM-MSCs can drive macrophages
differentiation into anti-inflammatory phenotype M2, while
they inhibit the differentiation of pro-inflammatory phenotype
M1 (120). DNA methyltransferase 1 in SLE patients’ peripheral
blood mononuclear cells is increased. BM-MSC may down-
regulate the expression of methyltransferase 1 through the
MEK/ERK signaling pathway, thereby inhibiting self-activated
peripheral blood mononuclear cells from SLE patients (121).
UC-MSC can affect M1/M2 balance by regulating macrophage
metabolic pathways (Table 5) (113). Accordingly, MSCs play a
critical role in maintaining M1/M2 balance in SLE.

A number of studies have shown that MSC-Exo has lower
immunogenicity and can inhibit the development and
progression of experimental autoimmune encephalomyelitis,
traumatic spinal cord injury and diabetes animal models by
regulating M1/M2 balance and Th17/Treg ratio (122–124). A
previous study has shown that MSC-EVs enhance the anti-
inflammatory phenotype of regulatory macrophages by down-
regulating IL-23 and IL-22 and promoting inflammation
remission (Table 5) (114). At the same time, AD-MSCs
derived EVs are capable of inducing macrophage polarization
toward M2 under hypoxia conditions (Table 5) (115). MSC-Exo
exerts anti-inflammatory properties by promoting macrophages
differentiation toward M2 through miR-223/pKNOX1 pathway
(Table 5) (116). MSC-EVs delivering miR-216a-5p can be
transferred to macrophages and induce M2 macrophages
polarization through TLR4/NF-kB/PI3K/Akt signaling cascade
(Figure 1 and Table 5) (117). Interestingly, MSC-Exo attenuates
myocardial ischemia-reperfusion injury by enhancing M2
macrophages polarization through miRNA-182 and its
Frontiers in Immunology | www.frontiersin.org 7
downstream target, namely, toll-like receptor 4 (TLR4) (125).
Therefore, MSCs and MSC-EVs can effectively regulate
macrophages polar iza t ion toward M2 and inhib i t
macrophages-mediated inflammatory response. However, little
is known about the effect of MSCs and MSC-EVs on
macrophages in SLE. It has been shown that MSC mediated
macrophage polarization depends on the IL-6 signaling pathway
(126). UC-MSCs promote the proportion of CD206+ M2 cells
and the phagocytic activity of macrophages in an IL-6 dependent
manner in SLE (127). Human UC-MSCs/exosomes attenuate the
diffuse alveolar hemorrhage (DAH) induced inflammatory
responses and alveolar hemorrhage through increasing M2
macrophage polarization in DAH patients or lupus mice
(Table 5) (118, 119). All these findings have strongly suggested
the pivotal role of MSC-EVs in macrophage polarization in SLE.
MSC-Exo serves as a nanocarrier delivering bioactive molecules
between immune cells and stem cells, which may be a promising
treatment way for SLE.

During the past few years, immune metabolic disorders have
been implicated in SLE pathogenesis, whereas the regulatory
mechanism of MSC and MSC-EVs on the immune metabolic
phenotype of macrophages and M1/M2 bias in SLE remains
largely unclear. Blocking the reprogramming of macrophage
metabolism and maintaining the balance of M1/M2 in the
immune microenvironment would provide new insight into
identifying valuable strategies for the biological treatment of SLE.
POTENTIAL USE OF MSCs AND
MSC-EVs IN SLE TREATMENT

Current treatment strategies for SLE are mainly aimed at
controlling and mitigating disease activity. Although
Belimumab and Telitacicept have been approved for SLE
treatment, the heterogeneity of SLE has led to the dilemma of
current treatment status (128). Accordingly, identifying a more
effective treatment strategy has become a top priority for SLE.
Some studies have established that MSCs can attenuate the
adverse effects of immunosuppressive drugs. A previous study
TABLE 5 | Mechanism of action with MSCs and EVs on macrophage.

Cell type Immune cell Mechanism Effect Reference

MSC macrophage Through TGF-b/Akt/FoxO1 pathway toward M2 phenotype polarization (112)
UC-MSC macrophage regulating macrophage metabolic

pathways
affect M1/M2 balance (113)

MSC-Exo macrophage down-regulating IL-23 and IL-22 enhances the anti-inflammatory phenotype of macrophages, promoting
inflammation remission

(114)

AD-MSCs macrophage – toward M2 phenotype polarization (115)
MSC-Exo macrophage through miR-223/pKNOX1 pathway promoting macrophages differentiation toward M2 (116)
MSC-EVs macrophage through TLR4/NF-kB/PI3K/Akt signaling

cascade
toward M2 phenotype polarization (117)

UC-MSC/
exosomes

macrophage increased the proportion of M2
macrophage polarization

attenuate diffuse alveolar hemorrhage (DAH) induced inflammatory responses
and alveolar hemorrhage

(118, 119)
September 2021 | Volume 12 | Art
MSC, Mesenchymal stem cells; MSC, Mesenchymal stem cells; MSC-EVs, MSC derived Extracellular Vesicles; MSC-exo, MSC derived Exsome; UC-MSC, umbilical cord Mesenchymal
stem cells; AD-MSC, adipose MSC; TRAF6, IR7; IL-10, interleukin 10; IL-23, interleukin 23 ;IL-22 , interleukin 22; pKNOX1, PBX/knotted 1 homeobox 1; NF-KB, nuclear transcription
factor-kappa B; PI3K, phosphoinositide 3-kinase; PGE2, Prostaglandin E2; TLR4, Toll-like Receptor 4; DAH, diffuse alveolar hemorrhage.
icle 714832



Yang et al. MSCs and MSC-EVs in SLE
has implicated that MSCs combination with immunosuppressive
drugs display distinct effects on T cell activation and bias (129).
They exert a suppressive effect on proinflammatory T cell subsets
and promote the activation and function of anti-inflammatory
Treg cells (129). Besides, accumulating evidence has suggested
that mycophenolate mofetil (MMF) can selectively suppress B
cells proliferation (74). Lee HK et al. have found that prednisone
(PD) or MMF in combination with MSCs showed better
therapeutic effect than single therapy in lupus-prone MRL/lpr
mice (130). Combination of MSCs with PD or MMF can prolong
the survival, decrease autoantibody levels and inflammatory
cytokines in serum, and reduce the inflammatory cell
infiltration in kidney and spleen in lupus mice (130).
Moreover, immunosuppressants can influence MSC
transplantation (MSCT) mediated immune responses and
prolong the efficacy of transplanted MSCs (131). Accordingly,
the combination of MSCs and immunosuppressants may
become a more effectively therapeutic strategy for SLE.

MSCs are characterized by high self-renewal ability, rapid
expansion in vivo and in vitro, and low immunogenicity. They
can participate in immune response through two ways: paracrine
effects and cell-cell interaction directly. In SLE patients,
autologous MSCs are defective in immunomodulatory and
regenerative functions. Allogeneic mesenchymal stem cell
transplantation (MSCT) has brought new hope to cure severe
SLE patients (132, 133). Reconstruction of immune tolerance
and tissue regeneration and repair are necessary for SLE
treatment. MSCs are easy for isolation and purification, which
have good therapeutic effects in MRL/lpr and (NZB/NZW) F1
mice (134). Currently available animal studies have provided
strong evidence for the therapeutic potentials of MSCs in SLE.
The use of MSCs in treating SLE patients has also been reported
in some previously published studies. The clinical symptoms of
patients are significantly improved and the disease activity index
is significantly decreased, when UC-MSCs are applied to the
treatment of refractory and severe SLE patients.

MSCT is effective and safe in treating SLE patients and lupus
animal models, even though Deng D et al. have shown that
allogeneic UC-MSCs did not exert effects on SLE patients (135).
However, a previous study has revealed that metformin-treated AD-
MSCs regulated the Th17/Treg balance in MRL/lpr mice, and
metformin enhanced the immunomodulatory properties of AD-
MSCs through AMPK and STAT1 signal (Table 1) (136). It has
been demonstrated that transplantation of human MSC can
significantly inhibit disease progression in MRL/lpr mice (137).
The study by Tang X et al. has suggested that dental pulpMSC (DP-
MSCs) could alleviate the disease symptoms of lupus-prone B6/lpr
mice, especially reduce the kidney glomerular lesion and
perivascular inflammation infiltration (138). MSCs are found to
reduce proteinuria and serum anti-dsDNA levels, increase C3 and
C4 levels and alter serum cytokine profiles by down-regulating the
MyD88-NF-kB signaling pathway in NZBWF1 mice model (139).
Most importantly, mounting clinical studies have shown
intravenous infusion of UC-MSC is an available and safe practice
in SLE treatment, which not only significantly declines SLE Disease
Activity Index (SLEDAI) but also ameliorates renal function and
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systemic manifestations including hematopoietic and cutaneous
systems in SLE patients (140, 141). It has been well documented
that a repeated infusion of MSCs is feasible, and MSCT should be
adopted again 6 months after the first time to avoid disease relapse
in severe and refractory lupus patients (140, 142, 143). LN patients
get to renal remission 12 months after allogeneic MSCT, including
obvious renal function amelioration in parallel with significantly
improved glomerular filtration rate (144). Long-term serial
administration of human AD-MSCs can help to ameliorate SLE
without any adverse effects, which decreases the level of anti-double-
stranded DNA antibodies but significantly increases IL-10 and Treg
cells (145). Taken together, MSCT is a promising treatment strategy
for SLE as evidenced by both animal experiments and clinical tests.
However, the safety and efficacy need to be investigated in more
future studies with large sample size. Last but not the least, the effect
of MSCs derived EVs including exosomes in SLE is not clear yet,
although they have been demonstrated to possess similar biological
effects as MSCs in SLE (146).
PERSPECTIVES

Besides tissue repair and regeneration capacities, MSCs and MS-
EVs have strong anti-inflammatory and immunomodulatory
effects. They can be ideal therapeutic strategy for SLE,
particularly the refractory and severe SLE patients resistant to
hormones and immunosuppressant drugs. Accumulating data
has suggested MSC-EVs also have anti-inflammatory, anti-
apoptosis, pro-angiogenesis and immunomodulatory effects in
inflammatory and autoimmune diseases by transferring bioactive
constitutes to specific cells. Most importantly, MSC-EVs have
much less immunogenicity but similar biological function with
MSCs themselves, which act as a representative cell-free
treatment way. Moreover, MSCs are demonstrated to possess
tumorigenic potentials due to gene mutations, genetic instability
as well as excessive proliferation and differentiation. Therefore,
MSC-EVs may be a better choice for SLE treatment in future.
Nevertheless, genetic modification, metabolic recombination,
and other priming of MSCs in vitro should be considered
before MSC/MSC-EVs application for SLE treatment. The
standardized methods for MSC/MSC-EVs isolation,
quantification and quality control should also be seriously
considered before using MSC/MSC-EVs in treating SLE and
other immune diseases. Lastly, the time of infusion, the
appropriate dosage, the interval of treatment, and the long-
term safety of MSC/MSC-EVs treatment in SLE warrant
further clinical evaluations in more studies with high quality.
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