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Current status of research on exosomes 
in general, and for the diagnosis and treatment 
of kidney cancer in particular
Weipu Mao1,2*†, Keyi Wang1†, Zonglin Wu1†, Bin Xu2* and Ming Chen2* 

Abstract 

Kidney cancer is a common urological tumour. Owing to its high prevalence and mortality rate, it is the third most 
malignant tumour of the urinary system, followed by prostate and bladder cancers. It exerts a high degree of malig-
nancy, and most of the distant metastasis occurs at an early stage; it is insensitive to chemoradiotherapy and easily 
develops drug resistance. The current treatment for kidney cancer mainly includes surgery, interventional emboliza-
tion and targeted therapy; however, the treatment efficacy is poor. In recent years, the role of exosomes as mediators 
of intercellular communication and information exchange in the tumour microenvironment in tumour pathogenesis 
has attracted much attention. Exosomes are rich in bioactive substances such as nucleic acids, proteins and lipids and 
are involved in angiogenesis, immune regulation, drug resistance, formation of pre-metastatic niche, invasion and 
metastasis. This article reviews the ongoing research and applications of exosomes for the diagnosis and treatment of 
kidney cancer.
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Background
Kidney cancer, also known as renal cell carcinoma (RCC), 
is one of the most common malignancies of the urinary 
tract, and its incidence has increased at a rapid rate of 
2% per year over the past two decades [1, 2]. In 2018, 
approximately 400,000 new cases and 170,000 deaths 
owing to kidney cancer were reported worldwide [3]. In 
2015, approximately 74,000 new cases and 27,000 deaths 
owing to kidney cancer were reported in China [4]. Kid-
ney cancer is insensitive to radiotherapy and chemother-
apy, and surgery remains the mainstay of treatment for 
kidney cancer. However, approximately 30% of patients 

with kidney cancer develop metastasis on initial diag-
nosis, and approximately 25% of patients with localized 
kidney cancer may develop local recurrence or distant 
metastasis after surgery [5, 6]. Owing to recurrence or 
distant metastasis, the 5-year survival rate of patients 
with advanced kidney cancer is extremely low, approxi-
mately 5–10% [7, 8].

Exosomes are small extracellular vesicles composed 
of a lipid bilayer membrane structure; they are actively 
secreted by normal and cancer cells in the body and con-
tain proteins, nucleic acids, lipids and other bioactive 
substances [9, 10]. Exosomes play an important role in 
the exchange of information between cells by releasing 
bioactive substances that fuse with receptor cell mem-
branes or bind to cell surface receptors [11, 12]. Studies 
have demonstrated that exosomes play an important role 
in the development, diagnosis and treatment of kidney, 
prostate, bladder and breast cancers and serve potential 
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clinical applications as tumour markers, therapeutic tar-
gets and drug nanocarriers in clinical settings [13–15].

This article reviews the ongoing research and applica-
tions of exosomes for the diagnosis and treatment of kid-
ney cancer.

Overview of exosomes
Exosomes are nanoscale biological vesicles released into 
surrounding body fluids upon fusion of multivesicular 
bodies and the plasma membrane; they are produced and 
secreted autonomously by living cells in vivo and are the 
smallest extracellular vesicles [16, 17]. Exosomes are sub-
groups of extracellular vesicles with an average diameter 
of about 30–100 nm [18, 19]. Exosomes originate from 
the intracellular body structure, which influences the 
composition of exosome contents after interaction with 
other intracellular vesicles and organelles [20]. Exosomes 
were previously considered non-functional substances 
until 2007, when it was discovered that exosomes may 
act as ‘messengers’ that carry genetic material for the 
exchange of intercellular information and act within the 
recipient cells, suggesting that exosomes can be involved 
in intercellular information exchange [21–23]. The 
membrane structure of exosomes is resistant to exog-
enous proteases and RNA enzymes, thus resulting in 
more stable intracellular functional proteins, messenger 
RNAs (mRNAs) and microRNAs (miRNAs) that make 
exosomes a sensitive marker for disease diagnosis [24, 
25]. In many diseases, exosomes can function by altering 
cellular or tissue states, and exosome-related assays can 
be used as effective and non-invasive methods for disease 
diagnosis and monitoring [9, 10]. In addition, the study 
of molecular mechanisms related to exosome-mediated 
intercellular material exchange will also provide a theo-
retical basis for the development of exosome-related 
therapies [26, 27].

Composition of exosomes
As observed under the electron microscope, exosomes 
are hemispherical structures with a lipid bilayer mem-
brane [28]. Exosomes are composed of various com-
ponents, mainly including proteins, lipids and nucleic 
acids (Table 1), and are abundantly present in body flu-
ids, including blood, tears, urine, saliva, milk and ascites 
[38] (Fig.  1). Proteins mainly include tetraspanin, heat 
shock proteins, MVB formation, membrane transport 
and fusion proteins, antigen presentation, adhesion mol-
ecules, lipid raft and cytoskeletal proteins, which par-
ticipate in the fusion of cell membranes and release of 
exosomes [29–31]. Lipids mainly include cholesterol, cer-
amide, phosphatidylserine, phosphatidylinositol, phos-
phatidylcholine, sphingomyelin and ganglioside, which 
are involved in the biological activity of exosomes [32–
34]. Nucleic acids mainly include DNA, mRNA, miRNA, 
long non-coding RNA (lncRNA) and circular RNA (cir-
cRNA), which participate in the transmission of genetic 
information and diagnosis of diseases [35–37]. The spe-
cific components of exosomes are displayed in Table 1.

Formation of exosomes
The exact mechanism of exosome formation remains 
poorly understood, and the endosomal sorting complex 
required for transport (ESCRT) is a classical pathway 
[39, 40] (Fig. 2). The two main steps in the formation of 
exosomes are as follows: First, the cell membrane sags 
inward to form the early endosomes with accumulated 
luminal vesicles (ILV), and the endosomes are wrapped 
with proteins, lipids and nucleic acids synthesised by 
the cells; the endosomal membrane is depressed to bud 
inward to form tubular vesicles (intraluminal vesicles), 
that is, early endosomes (EEs) [41, 42]. Subsequently, the 
depressed membrane matures into multivesicular bodies 
(MVBs) with dynamic subcellular structures, that is, late 
endosomes (LEs), which can expose the transmembrane 

Table 1 Composition of exosomes

Type Cargoes Reference

Protein Tetraspanin CD9, CD63, CD81, etc [29–31]

Heat shock protein Hsp70, Hsp90, etc

MVB formation ALIX, TSG101, etc

Membrane transport and fusion proteins Rab, Annexins (I, II, IV, V, VI), etc

Antigen presentation MCH I, MCH II, etc

Adhesion molecules integrins, ICAM-1, CD146, etc

Lipid raft LAPA, Flotillin-1, Cholesterol, etc

Cytoskeletal proteins

Lipids Cholesterol, ceramide, phosphatidylserine, phosphatidylinositol, 
phosphatidylcholine, sphingomyelin, ganglioside, etc

[32–34]

Nucleic acids DNA, mRNA, miRNA, lncRNA, circRNA, etc [35–37]
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Fig. 1 The hallmarks and cargos of exosomes. Exosomes are hemispherical structures with lipid bilayer membrane under electron microscope. 
Exosomes are composed of various components, mainly including proteins, lipids and nucleic acids

Fig. 2 Exosome biogenesis and secretion within endosomal system by the endosomal sorting complex required for transport (ESCRT) pathway. 
Early endosomes (EEs) are formed by the fusion of endsomes. Subsequently, EEs depend on ESCRT to form multivesicular late endosomes (LEs)/
bodies (MVBs). Rab27a and Rab27b direct the movement of LEs/MVBs toward the cell periphery, the SNARE complex helps LEs/MVBs fuse with the 
plasma membrane to release exosomes, and the rest of LEs/MVBs are degraded by lysosomes
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protein domain of the cytoplasm and release multi-
ple vesicle structures into the extracellular environ-
ment upon fusion with the plasma membrane to form 
exosomes. Rab27a and Rab27b direct the movement of 
LEs/MVBs toward the cell periphery, the SNARE com-
plex helps LEs/MVBs fuse with the plasma membrane to 
release exosomes, and the rest of LEs/MVBs are degraded 
by lysosomes [43, 44].

Secretion of exosomes
Exosomes are secreted extracellularly through exocyto-
sis upon the fusion of intercalated compartments with 
plasma membrane, which is the most basic and common 
process in cells [45]. However, in T cells and mast cells, 
this fusion is dependent on calcium ions for activation 
[46]. Most intracellular membrane fusions occur through 
specific protein mechanisms, such as N-ethylmaleimide-
sensitive factor (NSF) for soluble factors and soluble 
NSF adhesion protein (SNAP) and SNAP adhesion pro-
tein receptor (SNARE) for membrane complex factors 
[47]. The two membranes in which fusion occurs should 
contain the corresponding SNAREs, namely vesicu-
lar SNARE (v-SNARE) and target SNARE (t-SNARE) 
[48, 49]. In addition, exosome secretion is controlled by 
Ras-associated GTP-binding protein 27a (Rab27a) and 
Rab27b [50, 51]. Synaptic binding protein-like 4 (SYTL4) 
and exophilin 5 (EXPH5) can inhibit Rab27a and Rab27b, 
leading to exosome secretion [51]. The exact mechanism 
of regulation of exosome secretion remains unclear, and 
the role of the above-mentioned molecules in exosome 
secretion requires further investigation.

Function of exosomes
Exosomes are released by different cell types and can reg-
ulate the biological activity of target cells by transport-
ing proteins, lipids and nucleic acids. They play a role in 
various biological processes such as angiogenesis, antigen 
presentation, apoptosis and inflammation [17]. They act 
by transferring informative substances, thus influenc-
ing physiological and pathological processes involved in 
cancer, neurodegenerative diseases, infections and auto-
immune diseases [52–56]. Exosomes affect the recipi-
ent cells through two pathways [57]. The first pathway 
involves ligand–receptor interactions between exosomes 
and recipient cells, without internalising the exosome or 
its contents into the target cell. This pathway can regulate 
the activation or inhibition of target cell signalling path-
ways. The second pathway involves the entry of exosomes 
into cells through membrane fusion or endocytosis, 
wherein their components are taken up and released 
into the cytoplasm, thus affecting the host cells by regu-
lating specific gene expression and signalling pathways 

and ultimately leading to changes in the cell function or 
phenotype.

Detection of exosomes
In recent years, with the progress of research on 
exosomes in tumours, various technologies for exosome 
detection have been introduced that focus on the fol-
lowing three aspects: isolation and enrichment, identi-
fication and content analysis [58–62]. In addition, some 
researchers have developed various kits for the diagno-
sis and prognostic risk assessment of tumours based on 
the composition of exosomes [56, 63–66]. Development 
of such detection kits is a major clinical breakthrough in 
the field of early tumour diagnosis and provides an effec-
tive test for clinical diagnosis and the assessment of effi-
cacy. However, there is a lack of a unified gold-standard 
method for exosome detection, which makes it difficult 
to be widely promoted in clinical settings. Therefore, it is 
necessary to discover a uniform and clinically recognised 
exosome detection technology.

Exosomes and kidney cancer
Involvement in the formation of tumour microenvironment
The tumour microenvironment is a key factor in the for-
mation of tumours, and tumour cells can interact with 
their microenvironment to promote tumorigenesis and 
progression [67]. Exosomes exhibit certain character-
istics of tissue and organ cellophilia, and the expression 
of this tendency is related to the expression of integrins 
on the surface of exosomes [68]. The establishment of 
pre-metastatic ecological niche is a complex process that 
involves the binding of exosomes secreted by cancer cells 
to the stromal cells of target organs, leading to the repro-
gramming of target cells, activation of signalling path-
ways and ultimately the establishment of a pre-metastatic 
microenvironment in target organs, thus providing the 
prerequisite for tumour metastasis [69, 70]. Exosomes are 
considered the main mediators of cell–cell interactions in 
the tumour microenvironment and are involved in pro-
moting tumour cell invasion, angiogenesis and immuno-
suppression [71–75]. The role of exosomal constituents 
in kidney cancer are shown in Fig. 3.

Contribution to angiogenesis
During tumorigenesis, tumour cells require a large sup-
ply of nutrients and oxygen to maintain rapid cell growth 
and reproduction. The formation of new blood vessels 
in the primary tumour foci provides more nutrients for 
the growth and spread of tumour cells [76, 77]. Tumour 
cells promote angiogenesis by activating endothelial cells 
[78]. Endothelial cells secrete exosomes rich in vascu-
lar endothelial growth factor (VEGF), fibroblast growth 
factor (FGF), angiopoietin-1 (ANGPT1), ephrin A3 
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(EFNA3), matrix metallopeptidase 2 (MMP2), matrix 
metallopeptidase 9 (MMP9) and azurocidin 1 (AZU1), 
which can stimulate the production of adjacent tumour 
blood vessels [78–82]. Grange et  al. [70] verified that 
a subset of CD105-expressing tumour-initiating cells 
in human kidney cancer released microvesicles, which 
triggered angiogenesis and promoted the formation of 
pre-metastatic niches. Hou et al. [72] demonstrated that 
oncogenic miR-27a delivered by exosomes can bind to 
secreted frizzled-related protein 1 (SFRP1) and promote 
angiogenesis in kidney cancer. Tyrosine kinase inhibitor 
(TKI)-resistant kidney cancer can secrete low levels of 
exosomal miR-549a to induce vascular permeability and 
angiogenesis to promote kidney cancer metastasis [83]. 
Li et al. [84] found that ApoC1 transfer from kidney can-
cer cells to vascular endothelial cells through exosomes 
promoted angiogenesis and enhanced the migration 

and invasion of human umbilical vein endothelial cells 
(HUVEC) cells by activating signal transducer and acti-
vator of transcription 3 (STAT3). In addition, exosomes 
with high expression of carbonic anhydrase IX (CA IX) 
are associated with kidney cancer revascularisation [85]. 
The establishment of a vascular network is not only 
essential for the normal growth of tumour tissues but 
also provides an important channel for tumour invasion 
[86].

Contribution to immune escape
Myeloid-derived suppressor cells (MDSCs) exert potent 
inhibitory effects on several immune cells, and their high 
concentration aggregation in the tumour microenviron-
ment is one of the reasons for the formation of tumour 
immune escape [87, 88]. It was found that Hsp70 was 
abundantly present in exosomes secreted by mouse 

Fig. 3 Role of exosomal constituents in kidney cancer. Exosomal component sare involved in the proliferation, migration and invasion, metastasis, 
angiogenesis, drug resistance, and epithelial mesenchymal transition (EMT) of kidney cancer
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kidney cancer cells (Renca cells), upregulated the expres-
sion of arginase 1 (ARG-1), iNOS, interleukin 6 (IL-6) 
and VEGF and induced the expression of MDSCs by 
phosphorylating STAT3 (p-STAT3) pathway, thus pro-
moting tumour growth [75, 89].

Natural killer (NK) cells are the main host defence 
factors against kidney cancer cells and can exert anti-
tumour effects by either directly mediating cytotoxic 
activity through degranulation or promoting anti-tumour 
activity and producing immunomodulatory cytokines 
[90–92]. Xia et  al. [93] found that exosomes of kidney 
cancer origin induced defective NK cell function through 
transforming growth factor-beta (TGF-β)/SMAD signal-
ling pathway to evade natural immunity.

Exosomes secreted by kidney cancer cells can induce 
immune responses in T cells to trigger apoptosis of acti-
vated T lymphocytes by activating the caspase path-
way. They can diminish the cytotoxicity of NK cells and 
reduce the production of IL-2, interferon gamma (IFN-γ), 
IL-6 and IL-10, which contribute to the immune escape 
and promote the development of kidney cancer [77, 94, 
95]. In addition, exosomes isolated from human renal 
adenocarcinoma ACHN cells contain Fas ligands, which 
inhibit the action of the human immune system by induc-
ing apoptosis of CD8+ T cells and ultimately help cancer 
cells in achieving immune escape [96].

Involvement in cancer cell invasion and metastasis
A key molecular event in the development of target 
organ/tissue metastasis by tumours is the formation of 
tumour pre-metastatic niches [97]. Tumour pre-met-
astatic niches are defined as some molecular and cellu-
lar changes in metastatic-designated organs/tissues that 
can facilitate the colonisation of target organs/tissues by 
circulating tumour cells and promoting distant tumour 
metastasis [98]. In recent years, secretory components 
and cells found in distant metastatic tissues of differ-
ent tumour animal models, including soluble factors, 
exosomes, vesicles and MDSCs, have confirmed the pres-
ence of tumour pre-metastatic niches in most types of 
malignancies [99, 100]. Exosomes can alter the target cell 
function through substances they carry; tumour-derived 
exosomes that act on epithelial cells lead to epithelial–
mesenchymal transition (EMT), which is important in 
tumour metastasis [101].

Role of exosomes in the diagnosis of kidney cancer
Proteins
Raimondo et  al. [73] identified 261 and 186 proteins by 
isolating urinary exosomes from normal patients and 
patients with kidney cancer, respectively, and most pro-
teins were membrane-associated or cytoplasmic. Among 
these proteins, the expression of MMP9, ceruloplasmin 

(CP), podocalyxin like (PODXL), carbonic anhydrase IX 
(CAIX) and dickkopf 4 (DKK4) in urinary exosomes was 
higher in patients with kidney cancer than that in nor-
mal patients, and the expression of CD10, extracellular 
matrix metalloproteinase inducer (EMMPRIN), dipepti-
dase 1 (DPEP1), syntenin 1 and aquaporin 1 (AQP1) in 
urinary exosomes was higher in normal patients than 
that in patients with kidney cancer. These proteins may 
serve as potential markers of kidney cancer. Wang et al. 
[68] investigated the effect of exosomes isolated from 
cancer stem cells (CSCs) of 76 patients with metastatic 
RCC and 133 patients with localised RCC and found that 
CD103+ played a role in directing CSC exosomes to tar-
get cancer cells and organs. In addition, Tsuruda et  al. 
[102] found that Rab27b protein can play an oncogenic 
role in renal cancer and sunitinib resistance through exo-
some-independent function.

mRNA
mRNAs are a class of single-stranded RNAs that carry 
genetic information and can direct protein synthesis; 
they are transcribed from a strand of DNA as a tem-
plate [103, 104]. Exosomes can carry and transport large 
amounts of mRNA to function in the recipient cells 
[23]. Grange et  al. [70] identified mRNAs implicated in 
tumour progression and metastasis through molecular 
characterisation of microvesicles, including VEGF, FGF2, 
ANGPT1, EFNA3, MMP2 and MMP9. In addition, Palma 
et al. [105] reported that the mRNA levels of glutathione 
s-transferase alpha 1 (GSTA1), CCAAT enhancer binding 
protein alpha (CEBPA) and pterin-4 alpha-carbinolamine 
dehydratase 1 (PCBD1) in urinary extracellular vesicles 
were lower in patients with RCC than those in controls, 
and the mRNA levels of these three genes returned to 
normal 1 month after nephrectomy. This demonstrates 
that mRNA levels in urinary extracellular vesicles serve 
as potential molecular markers for the diagnosis of RCC.

miRNA
miRNAs are smaller endogenous non-coding RNAs 
(18–24 nucleotides) that regulate protein translation 
after gene transcription [106, 107]. They can act as onco-
genes or tumour suppressors involved in tumorigenesis 
[108, 109]. Several exosomal miRNAs have been identi-
fied to be differentially expressed in patients with renal 
cancer and normal patients. Grange et al. [70] found that 
24 miRNAs, including miR-200c and miR-650, were sig-
nificantly upregulated in CD105+ microvesicles, and 33 
miRNAs, including miR-100 and miR-296, were signifi-
cantly downregulated, and several miRNAs such as miR-
29a, miR-650, and miR-151 were associated with tumour 
invasion and metastasis. Zhang et  al. [110] found that 
the expression levels of miR-210 and miR-1233 in blood 
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exosomes were significantly higher in patients with RCC 
than those in healthy subjects, and the expression levels 
were significantly decreased after surgical removal of the 
tumour. Xiao et  al. [111] sequenced exosomal miRNAs 
from plasma samples and found that the expression level 
of miR-149-3p and miR-424-3p was upregulated, whereas 
that of miR-92a-1-5p was significantly decreased. In addi-
tion, other miRNAs were reported to be potential diag-
nostic biomarkers of kidney cancer [68, 83, 112–118].

lncRNA
lncRNAs are RNAs that are longer than 200 nucleotides 
and cannot code for proteins [119]. They can control 
cellular transcription and protein translation by inter-
acting with proteins, mRNAs or miRNAs [120]. Malig-
nant tumour cells can express specific lncRNA markers, 
indicating that lncRNAs can be used as disease-specific 
markers that are important for cancer diagnosis [121]. 
lncRNAs are abundantly expressed in exosomes and can 
be protected by the exosomal tegument with higher sta-
bility [122, 123]. Similar to miRNAs, lncRNAs play an 
important role in the growth, proliferation, invasion and 
metastasis of cancer cells [124]. Qu et  al. [125] demon-
strated that exosome-transmitted lncARSR promoted 
AXL and c-MET expression in RCC cells by competi-
tively binding to miR-34/miR-449, thereby promoting 
sunitinib resistance. Exosomal lncRNAs are important 
in tumour biology, and further studies are required to 
understand the role of exosomal lncRNAs in renal cancer.

circRNA
CircRNAs are a newly discovered type of non-coding 
RNAs that form a covalently closed continuous loop 
structure that originates from exons or introns by specific 
selective shearing [126–128]. It has been found that a 
large number of circRNAs can be detected in exosomes. 
circRNAs function as miRNA sponges during gene regu-
lation [129, 130]. Based on the circRNA expression array 
data, Xiao et  al. [131] found that circ_400068 was sig-
nificantly upregulated in exosomes derived from RCC. 
At present, circRNAs in exosomes derived from renal 
cancer cells have been investigated in a relatively small 
number of studies, and therefore, further investigation 
is required. Potential biomarkers derived from exosomes 
that have been validated in kidney cancer are listed in 
Table 2. Figure 3 demonstrates the role of exosomal con-
stituents in kidney cancer.

The role of exosomes in kidney cancer treatment
Tumour drug resistance
Tumour drug resistance is one of the main reasons for 
the failure of clinical treatment of tumours. Drug-resist-
ant tumour cells can secrete exosomes that contain the 

genetic information of multiple drug resistance-associ-
ated proteins, which in turn cause other tumour cells to 
acquire drug resistance [132, 133]. Several receptor tyros-
ine kinases associated with angiogenesis and tumour 
microenvironment are overexpressed mainly owing to 
the inactivation of Von Hippel–Lindau (VHL) tumour 
suppressor genes in renal cancer; therefore, TKIs, includ-
ing sunitinib, have become one of the first-line therapies 
for renal cancer [134]. However, sunitinib resistance has 
made the clinical benefit of sunitinib treatment limited 
at present [135]. Qu et al. [125] found that drug-resistant 
cells in nephropathy transmitted lncARSR to other cells 
through exosomes, causing them to develop drug resist-
ance, and lncARSR promoted AXL/c-MET expression by 
competitively binding to miR-34/miR-449. MET expres-
sion, which in turn promoted lncARSR expression as 
positive feedback, further promoted drug resistance in 
renal cancer cells. In addition, Tsuruda et al. [102] found 
that Rab27b can play an oncogenic role in sunitinib 
resistance in renal cancer through exosome-independent 
function. The above-mentioned study demonstrates that 
exosomes mediate the development of drug resistance in 
tumour cells, which can not only provide novel therapeu-
tic targets for patients but also predict the responsiveness 
of patients to anti-tumour drugs through the detection of 
exosomal markers, thus providing an important reference 
for individualised treatment of kidney cancer [44, 136].

Drug carriers
Owing to their lipid bilayer membrane structure, 
exosomes can protect RNA present inside the mem-
branes from degradation by RNA enzymes, and owing 
to their smaller particle size and deformability, they can 
cross the biological membranes more easily, thus facili-
tating precise delivery of therapeutic genes to the target 
cells [137, 138]. Exosomes can mediate the transfer of 
genetic material, thus altering the biological activity of 
recipient cells [139]. Exosomes can carry various thera-
peutic substances, including RNAs and antisense oli-
gonucleotides [24]. Exosomes can deliver therapeutic 
substances directly to target organs through different 
biological barriers, for example, macrophage-derived 
exosomes can effectively cross the blood–brain barrier 
to deliver protein-like substances [140]. Ligand enrich-
ment on engineered exosomes can also be used to induce 
or inhibit signalling in the receptor cells for targeting 
exosomes to specific cells [141]. In addition, exosomes 
can be effectively loaded with chemotherapeutic drugs 
with low toxic side effects. Therefore, they can serve as 
well-tolerated and promising drug carriers [142, 143]. 
Currently, exosomes are considered important drug 
delivery carriers for the treatment of cardiovascular 
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diseases and pancreatic cancer [35, 144]; however, their 
role in kidney cancer requires further investigation [145].

Tumour vaccines
Compared with conventional vaccines, the vaccines 
developed using exosomes derived from tumour cell 
secretion may exert incomparable effects with higher 
affinity [146]. Exosomes secreted by tumour cells can 
present tumour-associated antigens and induce the 
development of immunity against tumours [94]. Zhang 
et  al. found that IL-12-anchored kidney cancer cell-
derived exosomes induced the production of more cyto-
toxic T lymphocytes specific for kidney cancer antigens 
and improved anti-tumour effects [147]. They further 
constructed an enhanced immunogenic EXO-IL-12 vac-
cine capable of stably expressing kidney cancer-specific 
antigen G250, immune-associated protein and GPI-
IL-12, which can significantly enhance the proliferation 
and activation of T lymphocytes in  vitro and exert an 

induced antigen-specific killing effect [74, 148]. Another 
study found that mice with kidney cancer vaccinated 
with tumour exosome-loaded dendritic cell (DC-TEX) 
vaccine had a longer survival period than that of mice 
vaccinated with tumour cell lysate-loaded dendritic cell 
vaccine [149]. Exosomes that are loaded and delivered 
with tumour suppressor genes that inhibit tumour cell 
growth provide necessary conditions for the develop-
ment of exosomal tumour vaccines [150–152].

Conclusion
Early diagnosis of kidney cancer is one of the key 
factors in improving the survival rate of patients. 
Exosomes may benefit early diagnosis. Exosomes 
secreted by kidney cancer cells are abundantly present 
in blood, urine and other body fluids, thus providing 
advantages such as easy availability, non-invasive exam-
ination and tumour specificity. Owing to their small 
size, high mobility and lipid bilayer structure, they can 

Table 2 Exosomes derived potential biomarker for kidney cancer

Type Source Cohorts Method Cargoes Year Reference

Protein Urine 29 RCC, 23 health LC-MS/MS, western blotting MMP9, CP, PODXL, CAIX 
and DKK4; CD10, EMMPRIN, 
DPEP1, Syntenin 1 and AQP1

2013 Raimondo et al. [73]

Serum 76 metastatic RCC, 133 
located RCC 

Flow cytometry CD103 2019 Wang et al. [68]

Supernatants A498 cell ExoELISA-ULTRA CD63 kit RAB27B 2020 Tsuruda et al. [102]

mRNA Supernatants Cancer stem cells Microarray, qRT-PCR VEGF, FGF2, ANGPT1, EFNA3, 
MMP2 and MMP9

2011 Grange et al. [70]

Urine 46 RCC, 22 health Microarray, qRT-PCR GSTA1, CEBPA, PCBD1 2016 Palma et al. [105]

miRNA Supernatants Cancer stem cells Microarray, qRT-PCR miR-200c, miR-650, miR-100, 
miR-296, miR-29a, miR-650, 
miR-151

2011 Grange et al. [70]

Urine 81 RCC, 33 health Microarray, qRT-PCR miR0126-3p, miR-449a, 
miR-34b-5p, miR-486-5p, 
miR-30c-5p

2016 Butz et al. [118]

Plasma 44 metastatic RCC, 65 meta-
static RCC 

RNA-sequencing, qRT-PCR miR-let-7i-5p, miR-26a-1-3p, 
miR-615-3p

2017 Du et al. [113]

Serum 82 RCC, 80 health qRT-PCR miR-210, miR-1233 2018 Zhang et al. [110]

Supernatants HK-2 cell, 786-O cell qRT-PCR miR-205 2018 Crentsil et al. [115]

Serum 40 RCC, 30 health, 5 lung 
metastasis RCC 

Microarray, qRT-PCR miR-210 2018 Wang et al. [117]

Serum 76 metastatic RCC, 133 
located RCC 

qRT-PCR miR-19b-3p 2019 Wang et al. [68]

Urine 70 early-stage RCC, 30 health NGS, qRT-PCR miR-30c-5p 2019 Song et al. [112]

Urine/ Supernatants Mice urine; mouse and 
human tRCC cell lines

qRT-PCR miR-204-5p 2019 Kurahashi et al. [114]

Plasma 5 RCC, 5 health; 22 RCC, 16 
health

RNA-sequencing; qRT-PCR miR-92a-1-5p, miR-149-3p, 
miR-424-3p

2020 Xiao et al. [111]

Supernatants 786-O cell, 786-O-SR cell qRT-PCR miR-549a 2021 Xuan et al. [83]

Plasma ACHN cell Microarray, qRT-PCR miR-15a 2021 Li et al. [116]

lncRNA Plasma 71 advanced RCC, 32 health qRT-PCR lncARSR 2016 Qu et al. [125]

circRNA Plasma 28 RCC circRNA microarray circ_400068 2020 Xiao et al. [131]
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easily passthrough biological membranes and protect 
rich bioactive substances present inside the membranes 
from degradation; therefore, exosomes have become 
a prime focus of research. Tumour-derived exosomes 
carry a large number of substances, including pro-
teins, nucleic acids and lipids, which can alter the bio-
logical behaviour of target cells and participate in the 
development of kidney cancer. Numerous studies have 
found that the expression of exosomes is significantly 
different in patients with kidney cancer and normal 
subjects. Exosomes play an important role in the infil-
tration and metastasis of kidney cancer and also par-
ticipate in tumour drug resistance and immune escape. 
Studies related to exosomes provide new ideas for the 
diagnosis and treatment of kidney cancer and offer 
adequate developmental prospects. However, studies 
on exosomes derived from renal cancer cells are mostly 
retrospective, and the tissue types mostly include renal 
clear cell carcinoma. To promote the application of 
exosomes in clinical settings, more extensive studies 
combined with clinical trials are required, and future 
studies should include increased sample sizes and 
different tissue types and adopt a prospective study 
design, which will be more convincing and provide sub-
stantial medical data support for clinical translation. 
In addition, the study of exosomes in kidney cancer is 
relatively independent and none of the molecules iden-
tified seem to have been repeatedly validated in differ-
ent studies, which requires more prospective clinical 
trials leading to more reproducible biomarkers. More-
over, further investigation is required for developing 
exosome-mediated tumour vaccines and understand-
ing the effect and mechanism of drug resistance on tar-
geted therapy for kidney cancer.
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