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Neisseria gonorrhoeae and Chlamydia trachomatis are the most common causes of
bacterial sexually transmitted diseases (STDs) with complications in women, including
pelvic inflammatory disease (PID), ectopic pregnancy, and infertility. The main concern
with these infections is that 70% of infected women are asymptomatic and these
infections ascend to the upper female reproductive tract (FRT). Primary infection in
epithelial cells creates a cascade of events that leads to secretion of pro-inflammatory
cytokines that stimulate innate immunity. Production of various cytokines is damaging
to mucosal barriers, and tissue destruction leads to ciliated epithelial destruction
that is associated with tubal scarring and ultimately provides the conditions for
infertility. Mesenchymal stem cells (MSCs) are known as tissue specific stem cells
with limited self-renewal capacity and the ability to repair damaged tissues in a
variety of pathological conditions due to their multipotential differentiation capacity.
Moreover, MSCs secrete exosomes that contain bioactive factors such as proteins,
lipids, chemokines, enzymes, cytokines, and immunomodulatory factors which have
therapeutic properties to enhance recovery activity and modulate immune responses.
Experimental studies have shown that local and systemic treatment of MSC-derived
exosomes (MSC-Exos) suppresses the destructive immune response due to the delivery
of immunomodulatory proteins. Interestingly, some recent data have indicated that
MSC-Exos display strong antimicrobial effects, by the secretion of antimicrobial peptides
and proteins (AMPs), and increase bacterial clearance by enhancing the phagocytic
activity of host immune cells. Considering MSC-Exos can secrete different bioactive
factors that can modulate the immune system and prevent infection, exosome therapy is
considered as a new therapeutic method in the treatment of inflammatory and microbial
diseases. Here we intend to review the possible application of MSC-Exos in female
reproductive system bacterial diseases.

Keywords: antimicrobial effects, mesenchymal stem cells, MSC-derived exosomes, antibacterial properties,
Neisseria gonorrhoeae, Chlamydia trachomatis, female infertility

Frontiers in Microbiology | www.frontiersin.org 1 January 2022 | Volume 12 | Article 785649



fmicb-12-785649 January 27, 2022 Time: 15:25 # 2

Zohrabi et al. MSC-Derived Exosomes and Female Infertility Treatments

INTRODUCTION

Today, with the huge concern regarding antibiotic resistance and
due to absence of an effective vaccine, researchers are looking for
suitable alternatives to solve this problem (Hosseiniyan Khatibi
et al., 2020; Russell et al., 2020). Mesenchymal stem cells (MSCs)
are defined as undifferentiated renewable cells. These cells can
be isolated from different tissues including bone marrow, cord
blood, skin, fallopian tube, liver, lungs, endometrium, testis,
amnion, ovary, and adipose tissue (Akyash et al., 2016a,b;
Sadeghian-Nodoushan et al., 2016; Zhang et al., 2016; Akyash
et al., 2020; Hoseini et al., 2020). Moreover, there are reports
indicating the generation of MSCs from pluripotent human
embryonic stem cells (hESCs) (Akyash et al., 2016a; Javidpou
et al., 2021). The therapeutic potentials of MSCs are accomplished
through three mechanisms. The first is differentiation into
multiple cell types, which provides the condition for repairing
and replacing damaged tissues. The second is that MSCs migrate
to injured tissues due to chemical gradients. The third mechanism
is the most important mechanism due to secretion of bioactive
factors (Vizoso et al., 2017). Moreover, MSCs are able to secrete
nanoparticles called exosomes that from by fusion of the cell
membrane of multivesicular and are considered as extracellular
vesicles (EVs). EVs according to International Society for
Extracellular Vesicles (ISEV) are divided into three classes based
on their size and origin, which include exosomes, microvesicles
(MVs), and apoptotic bodies; (a) exosomes with various in size
of 30–150 nm originate from multivesicular bodies (MVBs), (b)
microvesicles in size of 150–1000 nm, (c) apoptotic bodies with
a wide size distribution of 50–2000 nm (Gurunathan et al., 2019;
Akbari and Rezaie, 2020; Rezaie et al., 2021). Studies show that
MSCs exert their paracrine effects by secreting exosomes which
are known by other names including nanoparticles, exosome-
like vesicles, dexosomes, prostasomes, and tolerosomes (Zhang
et al., 2020; Rezaie et al., 2021). Exosomes are transitional vesicles
that release into the extracellular space through fusion with the
cell membrane, which can reach distance target cells and affect
their function and activity (Kowal et al., 2014). MSC-derived
exosomes (MSC-Exos) are able to secrete cytokines, chemokines,
and growth factors, proteins, mRNA, non-coding RNA, and
bioactive lipids that could elicit a wide range of physiological
activities (Harrell et al., 2019; Adib et al., 2020b,a; Yuan et al.,
2020). Moreover MSC-Exos are considered as an innovative
therapeutic tool to treat bacterial infections, consistent with
their unique properties (Park et al., 2019). Neisseria gonorrhoeae
(N. gonorrhoeae) and Chlamydia trachomatis (C. trachomatis)
are gram-negative bacteria that are both considered as obligate
human pathogens (Chen et al., 2018). Due to the pathogenesis
of N. gonorrhoeae and C. trachomatis and the ability of these
bacteria to cause chronic infections and, on the other hand,
considering the side effects of antibiotic resistance and the
absence of effective vaccines, new treatment strategies are needed
to repair damaged epithelial cells of fallopian tube (FT) in these
infections. As regards conditioned medium (CM) or MSC-Exos
contain growth factors, antimicrobial peptides/proteins (AMPs)
and cytokines have immunosuppression properties on innate and
adaptive immune responses via direct and indirect mechanisms.

In addition, CM and MSC-Exos have other therapeutic potentials
including anti-apoptotic activity, wound healing, tissue repair,
antiscarring, and angiogenesis regulation (Burlacu et al., 2013;
Williams et al., 2013; Vizoso et al., 2017; Adib et al., 2020b,a),
Here, we intend to review the application of MSC-Exos in female
reproductive system bacterial diseases.

ANTIMICROBIAL EFFECTS OF
MESENCHYMAL STEM CELLS

Many studies have shown that MSCs display antimicrobial
features by secretion of AMPs and regulation of immune
responses (Krasnodembskaya et al., 2010; Koniusz et al.,
2016). These antimicrobial effects of MSCs are mediated via
direct and indirect mechanisms (Russell et al., 2020). MSCs
directly interact with pathogens by secreting AMPs, including
lipocalin 2, cathelicidin, β-defensin 2, and hepcidin, thereby
playing an important role in increasing bacterial clearance
(Marrazzo et al., 2019; Chow et al., 2020). While MSCs are
exposed to pathogenic factors, including pathogen-associated
molecular patterns (PAMPs), lipopolysaccharide (LPS), and
damage-associated molecular patterns (DAMPs) via toll-like
receptors (TLRs), caused a change in their proliferation,
differentiation, migration, and secretory factors (Marrazzo et al.,
2019; Hosseiniyan Khatibi et al., 2020). The immunomodulatory
effects of MSC-Exos are mainly due to inhibition of T cells
proliferation and conversion of these cells to regulatory T cells
(Tregs) and also through reprogramming of M1 macrophage
cells to M2 phenotype that these immunomodulatory and anti-
inflammatory effects of MSC-Exos lead to tissue repair and
healing (Xie et al., 2020; Arabpour et al., 2021).

Direct Mechanisms
Antimicrobial peptides and proteins secreted from the MSC
directly play important roles in the bacteria clearance from
different pathways, including inhibition in the synthesis of DNA
and RNA, disruption of membrane integrity, and inhibition of
bacterial growth through disruption in iron uptake (Brogden,
2005; Hosseiniyan Khatibi et al., 2020). AMPs are produced
as the first line of defense of innate immunity against a
wide range of microorganisms, including bacteria, viruses, and
fungi (Diamond et al., 2009). Families of MSCs-derived AMPs
listed in Figure 1 are mainly studied including cathelicidin,
β-defensin-2, lipocalin 2, and Hepcidin (Alcayaga-Miranda et al.,
2017; Russell et al., 2020).

Cathelicidin
One of the important antibacterial peptides is the cathelicidin
family, which recruits monocytes, neutrophils, and macrophages
(Krasnodembskaya et al., 2010). LL-37 is a factor of this family
that is an essential part of the innate immune system that exerts
its antibacterial effect by disrupting the integrity of the bacterial
membrane and neutralizing LPS (Krasnodembskaya et al., 2010;
Thennarasu et al., 2010). This factor has also been shown to
play an important role in regulating inflammatory responses,
inducing tissue repair and healing as well as anti-apoptotic and
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angiogenic effects (Oliveira-Bravo et al., 2016; Yang et al., 2020),
and in a mouse model of septicemia provided protection against
endotoxin shock (Yagi et al., 2020). Johnson et al. (2017), in
a study of the antibacterial effects of MSC administration in
chronic infections associated with biofilms in mouse and dog
models, stated that i.v. administration of activated MSCs induce
the killing of bacteria by secretion of cathelicidin, and this effect
was increased by antibiotics.

β-Defensin 2
β-defensin 2 play important roles in innate and adaptive
immunity against microbial and exert its antibacterial effect by
creating pores in the bacterial membrane and destroying the
integrity of the membrane and leaking intracellular contents, as
well as inhibiting protein, DNA, and RNA syntheses (Laverty
et al., 2011; Méndez-Samperio, 2013). A study showed that
MSCs secrete the antimicrobial peptide of β-defensin 2 through
the TLR-4 signaling pathway after exposure to Escherichia
coli (Sung et al., 2016). The bacteriostatic potential of this
peptide is mainly against gram-negative bacteria and with
a lower antibacterial potential against gram-positive bacteria
(Harder and Schröder, 2005).

Lipocalin 2
Lipocalin 2 is secreted by various cells including neutrophils,
macrophages, epithelial cells, and MSCs in response to
inflammatory conditions, which plays an important role in
the antibacterial defense of the innate immunity (Dahl et al.,
2018). After exposure of MSCs to pathogenic factors lead to
the secretion of a large amount of lipocalin 2, this peptide
binds to siderophore, as an iron chelator of bacteria, which in
turn prevents iron uptake and subsequently reduces bacterial
growth (Goetz et al., 2002; Flo et al., 2004). Harman et al. (2017)
reported that MSCs derived from the peripheral blood of healthy
horses by the secretion of AMPs, including Cystatin C, elafin,
lipocalin, and cthelicidin, through disturbance in membrane
integrity, the growth of bacteria (E. coli and Staphylococcus
aureus) was inhibited .

Hepcidin
Hepcidin is secreted by hepatocytes, renal epithelial cells, as
well as by macrophages and MSCs in inflammatory conditions,
which plays an important role in the systemic regulation of iron
homeostasis (Kulaksiz et al., 2004, 2005; Esfandiyari et al., 2019).
Hepcidin is an antibacterial peptide of the innate immune system
that is primarily induced by the IL-6, LPS, and TLR-4 which
sequesters bacterial siderophores, and therefore restricts iron
availability and as a result inhibits bacterial growth (Ganz and
Nemeth, 2012; Michels et al., 2017). Two isoforms of hepcidin
are known, including hepcidin 20 and 25, both of which have
antibacterial properties (Maisetta et al., 2010).

Inducible Nitric Oxide Synthase Pathway
Mesenchymal stem cells and macrophages activated by LPS,
pro-inflammatory cytokines, and interferons (IFN) cause the
expression of inducible nitric oxide synthase (iNOS), which in
turn iNOS produces nitric oxide (NO) from the amino acid
L-arginine inside these cells. Production of NO in this way halts

the growth of microorganisms inside macrophages and MSCs
(Bogdan, 2015; Yang et al., 2016).

Cysteine Proteases
Studies show that MSC-Exos contain a variety of proteases,
including cysteine proteases, which impact the stability of
bacterial biofilms by degrading extracellular proteins, and thereby
provide conditions for antimicrobials penetration into biofilms
and also increase the effectiveness of antibiotics tolerated by
biofilms previously (Matsumoto et al., 1999; Marx et al., 2020).

Indoleamine 2,3 Dioxygenase
Indoleamine 2,3 dioxygenase (IDO) is the most important
enzyme in the kynurenine pathway (KP), which is primarily
responsible for the degradation of the tryptophan amino
acid, which MSCs mainly express this enzyme in response
to the stimulatory effect of INFγ (Däubener et al., 2009;
Croitoru-Lamoury et al., 2011). Depletion of tryptophan in
microorganisms due to IDO impairs protein synthesis and
disrupts cell division (Frumento et al., 2002; Meisel et al.,
2011). IDO has also been shown to induce immunomodulatory
effects by inhibiting T cells proliferation and modulating
the function of B, T cells, and natural killer (NK) cell
(Poormasjedi-Meibod et al., 2013).

Indirect Mechanisms
The antibacterial effects of MSCs can be indirectly mediated by
increasing phagocytic activity of macrophages and neutrophils
(Hosseiniyan Khatibi et al., 2020). These cells can also
induce immunomodulatory effects mentioned in Figure 2
by modulating immune responses and regulating cytokine
homeostasis and reducing immune cells transfer into the
damaged organ, and thereby provide the conditions for
tissue remodeling and healing. Moreover MSC-Exos perform
their major immunomodulatory effects by inhibiting T cell
proliferation and converting these cells to Tregs as well as
reprogramming M1 macrophages to the M2 phenotype (Riazifar
et al., 2019; Hoseini et al., 2020; Hosseiniyan Khatibi et al.,
2020; Liu W. et al., 2020). These cells and their exosomes
can also inhibit the proliferation and function of B cells,
natural killer cells (NKC), and dendritic cells (DC). MSCs
can induce both bacterial clearance and immunomodulatory
effects, which are dependent on inflammatory signals in the
environment (Fan et al., 2019; Xie et al., 2020). MSCs increase
immune responses during the early phases of inflammation such
that in addition to the migration of neutrophils to sites of
inflammation, MSCs induce lymphocyte and M1 macrophages,
through the production of chemokines. In fact, the stimulatory
effects of mesenchymal cells on immune cells occur when these
cells encounter insufficient levels of proinflammatory cytokines
such as TNF and IFN-γ, while MSCs and MSC-Exos provide
conditions for immunosuppressing during exposure to high
levels of inflammatory cytokines through polarization to anti-
inflammatory cells, M2 macrophages, and Tregs (Raicevic et al.,
2010; Bernardo and Fibbe, 2013; Song et al., 2017; Xie et al., 2020).
Thus, MSCs can activate both phenotypes of macrophages and
provide a balance between inflammatory and anti-inflammatory
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TABLE 1 | Antibacterial and Immunomodulatory Effects of MSCs and MSC-Exos in in vitro and in vivo studies.

Study type Source of MSC Outcomes References

In vivo:
Mouse and dog models of
chronic infections

AT-MSC ↑ Cathelicidin secretion
↑ Clearance of bacteria
↑ Monocyte recruitment
↑ M2 phenotype
↑ Neutrophil bacterial
Phagocytosis

Johnson et al.,
2017

In vivo:
Murine Cystic fibrosis

BM-MSC, AT-MSC ↑ Enhance antibiotic sensitivity
↑ Capacity to kill bacteria (Pseudomonas aeruginosa,
Staphylococcus
aureus)
↑ LL-37

Sutton et al.,
2017

In vitro:
Bacterial growth in Equine
model

BM-MSC, AT-MSC, EM-MSC ↓ Growth of E. coli
↑ Lipocalin-2 expression
↑ MCP-1, IL-6, IL-8, and CCL5

Cortés-Araya
et al., 2018

In vitro and In vivo:
Murine sepsis model

BM-MSC ↓ Genes expression of apoptosis
↓ Genes expression of Pro-inflammatory cytokine
↑ Antibacterial peptides
↑ Anti-inflammatory cytokines
↑ Animal survival rates
↑ Bacterial clearance (Staphylococcal
enterotoxin B)

Saeedi et al.,
2019

In vitro:
Chronic skin wounds in Equine
model

PB-MSC ↓ Growth of E. coli and S. aureus biofilms
↑ Cystatin C, elafin, lipocalin, cthelicidin

Harman et al.,
2017

Ex vivo:
Acute Lung Injury in Mice

HU-MSC ↑ Keratinocyte growth factor (KGF)
↓ Influx of neutrophils
↓ Lung protein permeability
↓ Pulmonary edema

Zhu et al., 2014

In vivo:
Chronic inflammation
(Staphylococcus aureus) of the
ovaries in mice

BM-MSC ↓ Leukocyte infiltration in ovaries
↓ Number of atretic follicles
↑ Ovary morphological
parameters
↓ Apoptotic oocytes
↑ Pregnancy rate

Volkova et al.,
2017

In vivo:
Chronic salpingitis (E. coli)
model in rabbits

WJ-MSC ↓ TNF-α
↑ Oviductal glycoprotein
↑ Repaired the structure of the tubal epithelium
↑ Pregnancy rates

Li et al., 2017

In vivo:
Chronic salpingitis (Chlamydia
trachomatis) murine model

hUC-MSC ↓ Macrophage infiltration
↑ IL-10
↓ FT cell apoptosis (Caspase-3)
↑ Pregnancy rate

Liao et al.,
2019

In vitro:
Human Fetal Liver

FL-MSC-Exos ↓ Proliferation, activation, and cytotoxicity of NK cells
via TGFb

Fan et al., 2019

In vivo:
Intrauterine adhesions in a
female rat model

UC-MSCs-EVs ↓TNF-α,
↓TGF-β
↓IL-1,
↓IL-6
↓RUNX2,
↓Fibrosis
↓collagen-I
↓VEGF
↓IUA

Ebrahim et al.,
2018

In vivo:
Premature ovarian insufficiency
model mice

hU-MSC-Exos ↑Restored ovarian phenotype and function
↑ovarian cells proliferation
↑exosomal miR-17-5P
↓SIRT7 expression

Ding et al.,
2020

In vitro:
inflammation in endometrial
cells of equine models

A-MSC- MVs ↓Apoptosis rate
↓Pro-inflammatory gene expression
↓Pro-inflammatory cytokines secretion

Perrini et al.,
2016

(Continued)
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TABLE 1 | (Continued)

Study type Source of MSC Outcomes References

Ex vivo:
Lung injury models in mice

BM-MSC-EV ↑M2 macrophage marker expression
↑Phagocytic macrophage Phenotype
↑Mitochondrial transfer to macrophage
↓Inflammation and lung injury

Morrison et al.,
2017

In vitro:
Asthma in human

BM-MSC-Exos ↑IL-10
↑TGF-β1
↑Immunosuppression capacity of Tregs

Du et al., 2017

MSC, mesenchymal stem cell; AT-MSC, adipose tissue-MSC; HU-MSC, human-MSC; BM-MSC, bone marrow-MSC; EM-MSC, endometrium-MSC; PB-MSC, peripheral
blood-MSC; FL-MSC, fetal liver-MSC; WJ-MSC, wharton’s jelly; hUC-MSC, human umbilical cord-MSC; A-MSC, amniotic-MSC; MCP-1, monocyte chemoattractant
protein-1; CCL5, chemokine ligand-5; FT, Fallopian tube; IUAs, intrauterine adhesions.

FIGURE 1 | Direct mechanisms of MSC-mediated bacterial killing, MSC exert direct antibacterial effects due to host defense peptides or AMPs. MScs can mediate
bacterial killing by disrupting the integrity of the bacterial membrane, creating pores in the bacterial membrane, preventing of iron uptake, inhibiting biofilm formation,
depleting tryptophan in microorganisms, and halting the growth of bacteria. IDO pathways, Indoleamine 2,3 dioxygenase; iNOS pathways, inducible nitric oxide
synthase; NO, nitric oxide.

responses through interaction with the immune system and
thereby provide the condition for maintaining integrity and
homeostasis of tissue (Liu W. et al., 2020; Xie et al., 2020). MSCs
inhibit proliferation and function of T cells by secreting factors
such as nitric oxide (NO), IDO, prostanglandin-E2 (PGE2),
transforming growth factor (TGF)-β, and interleukin (IL)-10
(DelaRosa and Lombardo, 2010).

Kol et al. (2014) in the study of effects of adipose-derived
MSCs on intestinal microbes (Salmonella typhimurium and
Lactobacillus acidophilus) concluded that these cells could
increase the expression of key immunomodulatory genes
including COX2, IL-6, and IL-8, as well as increase the secretion
of PGE2, IL-6, and IL-8, and they also found that exposure
of MSCs to S. typhimurium increased the capacity of these
cells to inhibit T cell proliferation via PGE2. MSC-Exos also
exert their immunomodulatory effects through their RNA and

proteins (Lo Sicco et al., 2017). Song et al. stated that exosomal
miR-146a is an anti-inflammatory micro-RNA that is transferred
into macrophages and leads to polarization to M2 phenotype
and ultimately increases survival in sepsis models of mice
(Song et al., 2017).

It has also been shown that MSCs inhibit T cell activity
by inhibiting the function, differentiation, and maturation of
dendritic cells (DCs) (Aggarwal and Pittenger, 2005). DCs are
the main cells of the immune system which present antigens
to T cells and are able to express high levels of co-stimulatory
molecules and thereby effectively induce immune responses;
thus MSCs and MSC-Exos can lead to inhibition of T cells
function and development of Tregs by inducing an inhibitory
effect on DCs (Aggarwal and Pittenger, 2005; Jiang et al.,
2005). Moreover, MSCs lead to recruitment and stimulation of
polymorphonuclear (PMN) cells such as neutrophils, by secreting
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FIGURE 2 | The antibacterial effects of MSC can be indirectly mediated by increasing phagocytic activity of macrophages and neutrophils. These cells can also
induce immunomodulatory effects by modulating immune responses and regulating cytokine homeostasis. MVs, microvesicles; DC, dendritic cell; NKC, natural killer
cell; NET, neutrophil extracellular trap; IFN, interferon; TNF, tumor necrosis factor; NO, nitric oxide; PGE2, prostaglandin E2; TGF, transforming growth factor; IDO,
indoleamine 2,3 dioxygenase; Treg, T regulatory cell; Ig, immunoglobulin.

IL-6 and IL-8 (Brandau et al., 2014). Neutrophils induce the
killing of microorganisms by phagocytosis and internalization
of them into the phagolysosome, and it has also been shown
that these cells, through mechanism of neutrophil extracellular
traps (NETs), immobilize microorganisms to prevent their spread
in the environment (Hirschfeld, 2014; Jackson et al., 2016).
Studies show that MSCs and MSC-Exos not only increase
phagocytosis activity of neutrophils but also protect neutrophils
from apoptosis (Harrell et al., 2019; Qian et al., 2021). In
addition, research showed that direct co-culture of MSCs
and their exosomes with macrophages induce mitochondrial
transfer from MSCs to macrophages via formation of structures
called tunneling nanotubes (TNT) that leads to increase in the
phagocytic activity of macrophages and improvement in their
bioenergetics (Hirschfeld, 2014; Qian et al., 2021).

PATHOGENESIS OF N. GONORRHOEAE
AND C. TRACHOMATIS IN THE FEMALE
REPRODUCTIVE TRACT

Neisseria gonorrhoeae and Chlamydia trachomatis are gram-
negative bacteria that are both considered obligate human
pathogens, and they are known as the most common cause
of sexually transmitted diseases (STDs) (Dehghan Marvast
et al., 2016, 2018; Chen et al., 2018; Lenz and Dillard, 2018).

N. gonorrhoeae mainly affects the mucous membranes of
female reproductive tracts. This infection starts from the lower
reproductive tract including the vagina and ectocervix and can
spread to the upper female genital tract (endometrium and
fallopian tubes) (Lenz and Dillard, 2018). Chlamydia is also
an intracellular pathogen that infects the epithelial cells of the
endocervix in women and the urethra in men (O’Connell and
Ferone, 2016). During its evolutionary cycles, Chlamydia forms
structures called elementary bodies (EBs) and reticulate bodies
(RBs). EBs are infective forms that are metabolically inactive,
but after chlamydia enters the host cell, EBs convert to RBs that
are metabolically active but non-infectious and are considered
as the replicating form of the bacteria (Brunham and Rey-
Ladino, 2005). N. gonorrhoeae and C. trachomatis infections
can be symptomatic or asymptomatic and without treatment
lead to complications such as pelvic inflammatory disease (PID),
obstruction of FT, tubal scarring, and loss of ciliated cells function
in these areas (Dehghan Marvast et al., 2017; Tsevat et al.,
2017). Studies have reported that N. gonorrhoeae attach to non-
ciliated cells through pili and Opa proteins in FT but lead to
loss of ciliated cells function and eventually the death of these
cells (Edwards and Apicella, 2004; Quillin and Seifert, 2018).
Various studies have linked the death of these cells to the
presence of toxic factors in bacteria, including lipopolysaccharide
(LPS) and lipooligosaccharide (LOS), which induce the host
immune system (Gregg et al., 1981; Christodoulides, 2019;
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Gulati et al., 2019). In the gonococcal infections following
exposure to pathogen associated molecular patterns (PAMPs),
the secretion of cytokine TNF is one of the first responses
of the host immune system (Patrone and Stein, 2007). One
study reported that increase in the concentration of TNF was
associated with decrease in function of ciliated cells (McGee
et al., 1999). On the other hand, studies have reported that
the reduction in ciliated cell activity and death of these
cells during gonococcal infections has been attributed to the
induction of apoptosis in FT epithelial cell by the TNF
cytokine (Edwards and Apicella, 2004; Morales et al., 2006).
Evidences also are showed that other factors, including IL-
1, IL-6, IL-8, monocyte chemoattractant protein-1 (MCP-1),
and granulocyte macrophage colony-stimulating factor (GM-
CSF) secreted during gonococal infections (Maisey et al., 2003;
Velasquez et al., 2012). Moreover, one study reported that the
levels of cytokines IL-2 and IL-12 were rapidly upregulated
during exposure to N. gonorrhoeae infection, such that IL-2 was
associated with lymphocyte proliferation, while IL-12 increased
IFNγ production by lymphocytes and NKC (Rarick et al., 2006).
Although magnitude Th17 responses in gonococcal infections
lead to the release of IL-17 and the recruitment of neutrophils,
the relative resistance of N. gonorrhoeae to neutrophil function
and the lack of an effective response to pathogen clearance have
been reported (Witt et al., 1976; Liu et al., 2012). Moreover,
immune responses in C. trachomatis infection include activation
of Th1 and proinflammatory cytokines IL-2, IL-6, TNF, and INF-
γ (Arno et al., 1990). One study reported that INF-γ levels in
endocervical secretions of women with C. trachomatis infection
were five times higher than uninfected women (Sellami et al.,
2014). Also, studies show that TLR-2 and TLR-4, which are
increased in C. trachomatis infection, play an important role in
inducing innate and acquired immune responses (Agrawal et al.,
2011; Lovett and Duncan, 2019).

But although lymphocyte proliferative responses in
gonococcal infections are increased compared to healthy
individuals, these immune responses cannot provide strong
protection against recurrence of the infection (Zhu et al., 2012).
Moreover, N. gonorrhoeae are able to manipulate and effect the
function of host immune cells, so that gonococcal infections have
been shown to exert immunosuppressive signaling by inhibiting
the proliferation of DCs, T cells, and B cell (Manicassamy et al.,
2009; Escobar et al., 2018). On the other hand, N. gonorrhoeae
induces the expression of immunosuppressive cytokines such as
TGF-β and IL-10 so that it has been stated that N. gonorrhoea
suppresses the activity of Th1 and Th2 by inducing the expression
of TGF-β (Mascellino et al., 2011).

Evidence suggests that the immune responses generated
during the pathogenesis of Neisseria and Chlamydia are polarized
toward cytotoxic responses and provide the conditions for
obstruction and scaring in FT (Menon et al., 2015; Jefferson
et al., 2021). According to research, different mechanisms are
involved in inducing infertility following N. gonorrhoeae and
C. trachomatis infection. The first mechanism involves the
ascension of the infection to the upper reproductive tract
(Hafner, 2015). The second mechanism involves the persistence
of the infection, which leads to long-term pathological immune

responses and thus provides the conditions for damage to
the epithelial cells of FT (Batteiger et al., 2010). It has also
been suggested that treatment failures by antibiotics lead to
recurrence of the infection and the development of infertility
via persistence of infection (Menon et al., 2015). The third
mechanism involves the secretion of cytokines from pathogen-
infected epithelial cells, which induce proinflammatory immune
responses that lead to severe epithelial cell damage and
fibrosis or scarring following repair mechanisms by infiltrating
fibroblasts (Darville, 2021). Since that salpingitis induced
by N. gonorrhoeae and C. trachomatis infections leads to
pathological immune responses and induces infertility, it is
necessary to create a good balance between immune activation
and immune suppression.

THERAPEUTIC POTENTIAL OF
MESENCHYMAL STEM CELL-DERIVED
EXOSOMES ON SALPINGITIS INDUCED
BY N. GONORRHOEAE AND
C. TRACHOMATIS INFECTIONS

Due to the unique life cycles of N. gonorrhoeae and
C. trachomatis, the major PID caused by these infections
are chronic, so antibiotic therapy is less effective, which often
leads to persistence of the infection and reinfection (Chen et al.,
2020). Various studies listed in Table 1 have reported the positive
effects of MSC-Exos in the treatment of gynecological diseases
(Sun et al., 2019; Zhang et al., 2019; Liu C. et al., 2020; Xin et al.,
2020; Zhao et al., 2020; Lee et al., 2021; Liao et al., 2021). Today,
MSC-Exos are used in cell therapy, regenerative medicine, auto-
immune, and microbial disease due to their unique properties
such as high proliferative capacity, easy isolation, and secretion of
bioactive factors, as well as having anti-apoptotic, antimicrobial,
antiscarring, tissue repair, and wound healing effects (Ha et al.,
2020; Raghav et al., 2021).

Exosomes Isolation of Mesenchymal
Stem Cell
Various techniques are used to separate exosomes from MSCs,
including ultracentrifugation, ultrafiltration, precipitation,
immunological separation, chromatography, and nanoFACS
(Théry et al., 2018; Rezaie et al., 2021). However, each of
these methods has advantages and disadvantages, and studies
have reported that the ultracentrifugation method is the most
common standard method for isolating exosomes (Momen-
Heravi et al., 2013). But Klymiuk et al. (2019) in their study stated
that the ultrafiltration method had higher results and efficiencies
in size-based isolation compared to the ultracentrifugation
method, and a 50-fold increase in concentration and less
time for isolation compared to the ultracentrifugation method
was reported. On the other hand, due to several overlapping
features between exosomes and viruses such as size, shape,
density, and biogenesis, Rezaie et al. (2021) reported that
nanoFACS and immunological methods are more suitable
for isolating exosomes from viruses in infected samples.
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Moreover, in most studies it has been stated that in order to
achieve better specificity and recovery in the separation of EV
or EV subtypes, the use of a combination of techniques or
additional techniques is recommended (Nikfarjam et al., 2020;
Liangsupree et al., 2021).

Advantages and Limitations of
Mesenchymal Stem Cells-Derived
Exosomes Application
Various studies have shown the superiority of using exosomes
rather than MSCs. The risk of tumor formation has not been
reported in exosome-based therapies, while the tumorigenic
risk in MSC-based therapies has been observed in several
studies (Mendt et al., 2019; Wei et al., 2021). In addition
to the fact that lower side effects of exosomal therapy than
mesenchymal transplantation have been reported in various
studies, Sun et al. (2015) have reported increased expression
of HLA and immunological rejection in MSCs transplantation.
In addition, studies have shown that exosomes are not affected
by apoptotic processes and cell death due to their non-
cellular nature, and therefore their stability is greater in the
damaged area (Lou et al., 2017; Wang et al., 2021). Exosomes
are also less expensive to produce than MSCs and are more
stable to store and easier for storage and, recently, it has
received more attention than cell-based therapy due to the
ability of exosomes to transport therapeutic biomolecules and
facilitate repair of the damaged site (Babaei and Rezaie,
2021). Despite the advantages of exosome therapy and its
therapeutic potential compared to their parent cells, several
disadvantages have been reported, including the lack of renewal
potential, the loss of some paracrine factors during the use
of isolation methods, and the possibility of viral infections
transmission and short half-life of exosomes (Takahashi et al.,
2013; Babaei and Rezaie, 2021).

Application Studies of Mesenchymal
Stem Cell-Derived Exosomes
Different evidences mentioned in Table 1 have reported the
antimicrobial effects of MSCs and MSC-Exos. However, these
studies are more limited to animal studies and clinical dates
are low. In the evaluation of antimicrobial activity of MSCs
in chronic infections associated with biofilm formation, it has
been reported that co-administration of MSCs with antibiotics
affected both direct and indirect pathways of these cells, such
that secretion factors of MSCs inhibited biofilm formation
and disrupted the growth of stabilized biofilms (Johnson
et al., 2017). It has also been suggested that administration
of these cells with antibiotics can have a synergistic effect in
reducing a variety of multi-drug resistance (MDR) in bacterial
infections (Chow et al., 2020; Russell et al., 2020). Liao et al.
reported that hUC-MSC reduced hydrosalpinx, macrophage
infiltration, and the expression of IL-10 in the oviduct. Also,
they observed that hUC-MSC induced anti-apoptotic effects
by reducing the expression level of caspase-3. In addition,
it was reported that pregnancy rate increased significantly,
and these effects were attributed to the anti-inflammatory and

anti-apoptotic properties of hUC-MSC (Liao et al., 2019). In
addition, Li et al. (2017) observed that WJ-MSCs restored the
epithelial structure of the FT and concentration of TNF was
decreased significantly in the treatment group with WJ-MSCs,
and they also reported that WJ-MSCs improved the secretion
of oviduct glycoprotein and fertility partially in rabbits with
chronic salpingitis. Furthermore, Ebrahim et al. (2018) revealed
that hUC-MSC-EV alone or in combination with estrogen
significantly reduced intrauterine adhesions in female rats due
to decrease in inflammatory cytokines (TNF-α, IL-1, IL-6) and
fibrotic markers (RUNX2, TGF-β, collagen-I). Also, Ding et al.
reported that hUMSC-Exos due to microRNA-17-5P repaired
the phenotype and function of the ovary, elevated ovarian cells
proliferation, and decreased ROS accumulation in POI mouse
model (Ding et al., 2020).

CONCLUSION

Experimental studies show that MSCs and MSC-Exos have a
high potential for the treatment of inflammatory and microbial
diseases. Furthermore, MSC-Exos have similar abilities to their
parent cells, which have a high potential for modulating immune
responses due to their therapeutic biomolecules. However, the
priority of using MSC-Exos compared to cell-based therapy
in terms of safety and stability has been reported in several
studies. In addition, MSC-Exos induce the phagocytic activity
of neutrophils and macrophages and improve the bioenergetics
of them to provide the conditions for increasing the survival
of these cells and the continuity of their function in bacterial
phagocytes. On the other hand, MSC-Exos play an important role
in preventing the pathological immune response by interacting
with immune cells and reprogramming M1 macrophages to
the M2 phenotype and converting Th to Tregs. Therefore,
it can be said that MSC-Exos due to these properties can
inhibit pathological immune responses during N. gonorrhoeae
and C. trachomatis infections, and in this way MSC-Exos provide
the conditions for tissue repair and prevent severe tissue damage
during infection.
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