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Abstract: Acute kidney injury (AKI) and chronic kidney disease (CKD) are rising in global prevalence
and cause significant morbidity for patients. Current treatments are limited to slowing instead of
stabilising or reversing disease progression. In this review, we describe mesenchymal stem cells
(MSCs) and their constituents, extracellular vesicles (EVs) as being a novel therapeutic for CKD. MSC-
derived EVs (MSC-EVs) are membrane-enclosed particles, including exosomes, which carry genetic
information that mimics the phenotype of their cell of origin. MSC-EVs deliver their cargo of mRNA,
miRNA, cytokines, and growth factors to target cells as a form of paracrine communication. This
genetically reprograms pathophysiological pathways, which are upregulated in renal failure. Since
the method of exosome preparation significantly affects the quality and function of MSC-exosomes,
this review compares the methodologies for isolating exosomes from MSCs and their role in tissue
regeneration. More specifically, it summarises the therapeutic efficacy of MSC-EVs in 60 preclinical
animal models of AKI and CKD and the cargo of biomolecules they deliver. MSC-EVs promote
tubular proliferation and angiogenesis, and inhibit apoptosis, oxidative stress, inflammation, the
epithelial-to-mesenchymal transition, and fibrosis, to alleviate AKI and CKD. By reprogramming
these pathophysiological pathways, MSC-EVs can slow or even reverse the progression of AKI to
CKD, and therefore offer potential to transform clinical practice.

Keywords: extracellular vesicle; exosome; mesenchymal stem cells; acute kidney injury; chronic
kidney disease; miRNA

1. Pathophysiology of AKI and CKD

Acute kidney injury (AKI) and chronic kidney disease (CKD) are established as global
health burdens, with a prevalence of one in ten adults for CKD [1]. AKI refers to a sudden
deterioration in renal function, resulting in increased plasma creatinine and blood urea
nitrogen (BUN) and/or declining urine output within hours to days [2–4]. The most
common causes are pre-renal with hypovolaemia, ischaemia, toxic injury, and sepsis,
leading to oxidative stress, inflammation, apoptosis, and necrosis of tubular epithelial cells
(TECs) [5]. In response, the remaining TECs proliferate and differentiate so recovery occurs
over a few weeks [5–7].

However, these nephroprotective mechanisms can be overwhelmed and there is a
25% risk of progression to CKD [8], and a 50% increase in 10-year mortality, particularly
from coronary events [9,10]. The most common cause of CKD is diabetes, followed by
glomerulonephritis, hypertension, and polycystic kidney disease, with smoking, a family
history of kidney failure, obesity, ≥60 years old, and being of Aboriginal or Torres Strait
Islander origin contributing to the overall risk [1,11]. In Type 2 diabetes mellitus (T2DM),
hyperglycaemia induces oxidative stress and inflammation, which leads to maladaptive
repair by fibroblasts and podocytes, and reduction of peritubular endothelial capillary
(PTC) networks [5,12,13]. A notable mechanism is the epithelial-to-mesenchymal transition
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(EMT), whereby TECs and fibroblasts transform into myofibroblasts and deposit TGF-β1
and extracellular matrix (ECM) proteins (collagen IV, fibronectin), thereby perpetuating the
cycle of glomerulosclerosis and tubulointerstitial fibrosis [5,12,14–16]. The fibrotic process
strongly correlates with a loss of renal function and CKD is defined by elevated urinary
albumin excretion ≥30 mg/g and/or a decrease in estimated glomerular filtration rate
(eGFR) to <60 mL/min/1.73 m2 for greater than three months [17].

2. Current Treatments for Kidney Failure

Current treatments only slow the decline in renal function through lifestyle mod-
ifications, managing concomitant cardiovascular disease, or offering dialysis or kidney
transplantation [11,18]. Dialysis is the most common reason for hospitalisation [19] and was
estimated to cost the Australian government $12 billion from 2009–2020 [20,21]. Quality of
life is poor on dialysis [22] and it is often considered a bridge to transplantation as people
wait an average of three years on the cadaveric transplant list [23]. Transplantation from
deceased or living donors increases five-year survival to 90% and 97%, respectively [24].
However, benefits are limited by donor shortages and the increased incidence of cancer
and infections due to long-term immunosuppression [25,26]. Therefore, novel therapeutics
slowing the progression of fibrosis and preventing or even reversing the deterioration in
renal function are urgently required.

3. Regenerative Properties of Mesenchymal Stem Cells

Innovative mesenchymal stem cell (MSC) therapies appear to show promise in re-
generative medicine [4]. MSCs are multipotent, non-haematopoietic stem cells, which
can be collected from various sources (bone marrow (BM), liver, kidney, adipose tissue,
urine, umbilical cord blood, umbilical tissue Wharton’s jelly, placenta) [27,28]. MSCs are
identified by their expression of surface markers, CD73, CD90, and CD105, and lack of
expression of haematopoietic markers (CD11b, CD19, CD34, CD45, CD79, HLA-DR) [29].
Owing to their multipotency, MSCs can replicate and differentiate into specialised cells
to repopulate injured tissues [30,31]. However, emerging evidence has shown that they
coordinate cellular communication and tissue repair by secreting bioproducts, called “ex-
tracellular vesicles” (EVs), which carry a diverse repertoire of trophic factors and genetic
material [29,31,32]. The source of MSCs can affect their differentiation capacity and secre-
tome [33]. For example, umbilical-MSCs share similar properties to BM-MSCs and retain
primitive characteristics of embryonic stem cells [34]. Moreover, Wharton’s jelly MSCs
are considered more immune-privileged and exert greater immunosuppressive properties
compared to adipose tissue [35] or BM-MSCs [36]. Nonetheless, it is the ease of harvesting
MSCs and their availability that determines their clinical applicability, and so both adult
and fetal sources of MSCs will be discussed.

However, there are some disadvantages of using cell-based MSC therapy. These
include the difficulty in generating a consistent source of cells with a stable phenotype
and the issue of delivering large cells intravenously where there is a risk of entrapment in
the pulmonary microvasculature, known as “first-past effect” [37]. Furthermore, there is
a risk of MSCs inducing granulocytosis [38], graft rejection, ectopic tissue formation [39],
and promotion of tumour growth [40,41]. By comparison, EVs can be prepared from the
conditioned media of MSCs and offer greater safety, biological tolerance, easier tissue
migration [42], lower propensity to induce an immune response [4], and no tumourigenic-
ity [43].

4. Mesenchymal Stem Cell-Derived Extracellular Vesicles

The regenerative properties of MSCs are mediated by the paracrine action of EVs
delivering biomolecules to neighbouring cells [40,43,44] (Figure 1). EVs are membrane-
enclosed particles classified by their cellular origin into three categories: apoptotic bodies
(1–5 mm), microvesicles (MVs) or microparticles (MPs) (100–1000 nm), and exosomes
(30–100 nm) [4,45]. The biogenesis of these EV subtypes is distinct [43,46] (Figure 1).
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Exosomes are derivatives of the endosomal compartment, secreted into the environment
when multivesicular bodies (MVB) fuse with the plasma membrane [44,47,48]. Given the
difficulties in differentiating the subtypes of EVs by their size, the International Society for
Extracellular Vesicles (ISEV) prefers the collective term of “EVs” to define particles released
from cells that are bounded by a lipid bilayer and cannot replicate [49].

Figure 1. The mechanism by which EVs are secreted from MSCs and mediate paracrine communi-
cation. MSCs can be harvested from multiple tissue sources (bone marrow, liver, kidney, adipose
tissue, urine, umbilical cord blood, Wharton’s jelly, placenta). EVs are membrane-enclosed particles
classified into three categories: apoptotic bodies, microvesicles, and exosomes. For example, exo-
somes are secreted when MVB fuse with the plasma membrane and are characterised by surface
expression of CD9, CD63, and CD81. They deliver a cargo of mRNA, miRNA, ncRNA, cytokines,
chemokines, and growth factors to nearby injured cells. EVs utilise specific receptors or membrane
fusion to enter target cells and the delivered material alters gene expression and cellular fate. This
reprograms pathophysiological pathways, such as proliferation, apoptosis, angiogenesis, oxidative
stress, and immunomodulation. MSC: mesenchymal stem cell; MVB: multivesicular bodies; EVs:
extracellular vesicles; CD: cluster of differentiation; ncRNA: non-coding RNA.

EVs carry a cargo reflecting the phenotype of their cells of origin [50], which in-
cludes cytokines, chemokines, growth factors, mRNA, miRNA, and other non-coding
RNA [28,51,52]. The collection of surface proteins, originating from the endosomal path-
way, distinguishes exosomes from MVs and includes tetraspanins (CD9, CD63, CD81),
heat shock protein (HSP) 70, ALIX, and tumour suppressor gene 101 [27,40,49]. EVs use
specific receptors or membrane fusion to enter target cells and deliver their contents as
a form of paracrine communication [53]. Consequently, the delivered material modifies
the phenotype of recipient cells by altering gene expression, stimulating transcription,
inducing phenotypic switches, or determining cellular fate, self-renewal, and differentia-
tion [29,52]. At the cellular level, this reprograms pathophysiological pathways, such as
proliferation, apoptosis, oxidative stress, angiogenesis, and immunomodulation to promote
tissue regeneration [4,45,50,54].
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Therefore, this review will summarise the methodologies for isolating exosomes, the
different clinical applications of MSC-EVs and, more specifically, their regenerative capacity
in treating animal models of AKI and CKD.

5. Methodologies of Exosome Isolation

The therapeutic use of exosomes requires the development of methodologies that
isolate exosomes of suitable quantity and quality from MSCs [43]. Exosomes can be
collected from various biofluids, including plasma, serum, urine, and saliva [55] with
conditioned cell culture media being the most widely used material [56]. Current isolation
protocols are based on the physical properties of density and size, or chemically through
the surface interactions with proteins [57] (Table 1). However, the methods are tedious
and non-specific and there is no consensus on a gold standard of isolation [58], with
differential ultracentrifugation chosen by 80% of researchers [56]. There is no set characteri-
sation of the three populations of EVs by size, so most methods isolate a heterogeneous
population [40,45,59,60]. Further standardisation is required.

Table 1. Comparison of methods to isolate exosomes from cell culture. RNA: ribonucleic acid; MSpec: mass spectrometry;
SEC: size exclusion chromatography; dUC: differential ultracentrifugation; EVs: extracellular vesicles; PEG: polyethylene
glycol.

Method Differential
Ultracentrifugation Density Gradient Size Exclusion

Chromatography
Invitrogen

Precipitation Affinity-Based

Principle

Based on size and
sedimentation rate by

successive
centrifugation at

increasing speed and duration
[61,62]

Based on density upon
flotation or pelleting

[45,63]

Based on separating
sample molecules

relative to pore size of
chromatography gel

column [57,64]

Compound
polymer-based

precipitation [63]

Affinity interaction
between surface

protein, sugar, or lipids,
with antibodies coated

on magnetic beads
[48,57,63,65]

Yield Intermediate Low Intermediate High Low

Purity Low Intermediate High Low Highest

Advantages

- Most commonly used
[56]

- High sample capacity
[63]

- Protein and RNA
components are
unaffected

- Suitable for MSpec,
RNA sequencing

- High separation
efficiency

- Avoids crushing or
deforming
exosomes [57]

- Reduces cellular
and protein debris

- Size uniformity
- Reduces protein

contamination
[66]

- Quick, simple [63]
- Widely available

[63]
- Size uniformity
- Suitable for RNA

sequencing

- Short processing
time [59]

- Simple,
convenient [59]

- Unaffected by
- exosome size
- No expensive

instrumentation
[63]

- Maintains
exosome
integrity [63]

Disadvantages

- Time-consuming [63]
- Labour-intensive
- Instrument-dependent:

rotor type and
centrifugal force [61,67]

- Inappropriate for small
sample volume [63]

- Contaminating pellet of
lipoproteins, nucleic
acids [45,68]

- Time-consuming
(density
preparation) [63]

- Instrument-
dependent
[63]

- Must combine with
SEC or dUC [57]

- Not suitable for
downstream
MSpec

- Low extraction
volume [66]

- Extensive
laboratory
equipment [66]

- Additional
enrichment
required [66]

- Precipitation of
non-EVs,
lipoproteins [69]

- Expensive [63]
- Affected by

exosome diameter
- Limited sample

processing per
reagent [63]

- Must extract PEG
before MSpec [57]

- Low sample
capacity

- Expensive
reagents

- Difficult elution
of exosomes
limits
downstream
applications [63]

6. Therapeutic Applications of MSC-EVs

In searching the database of https://clinicaltrials.gov (accessed on 18 May 2021), there
are currently thirteen clinical trials investigating the therapeutic efficacy of MSC-EVs in
various diseases. MSC-EVs have been applied in diabetes mellitus [40,70,71], myocardial in-
farction [43], conditioning transplants [72–74], cancer [42,75], macular degeneration [76,77],
repairing bone defects [78], osteoarthritis [79], Alzheimer’s disease (AD) [42,80–82],
ischaemic stroke [40,83,84], multiple sclerosis [85], and treating COVID-19 [86–89].
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6.1. Macular Degeneration

An ongoing Phase I trial (NCT03437759) is investigating the healing capacity of
umbilical-MSC-exosomes to repair areas of large and refractory macular injury [77]. A
single dose of 20 µg or 50 µg exosomes will be applied around the injured macular area
in 44 patients and the visual outcome will be followed up six months later. Pre-clinical
studies propose that MSC-exosomes suppress inflammation and inhibit apoptosis by
downregulating MCP-1, a key chemoattractant for monocytes [76].

6.2. Cancer

Tumour cells are known to secrete pathogenic exosomes to facilitate paracrine com-
munication in the tumour microenvironment and promote tumour growth, invasion,
metastasis, and drug resistance [90]. Many clinical trials have focused on the role of ex-
osomes as diagnostic (NCT04394572) [91] or prognostic (NCT04288141) [92] indicators
in cancer. However, MSC-exosomes may also be therapeutic in targeting cancers with
known driver mutations. For example, MSC-exosomes engineered to carry siRNA specific
to the oncogenic KrasG12D mutation (iExosomes) have successfully supressed pancreatic
ductal adenocarcinoma in mice [93]. In a current Phase I trial (NCT03608631), these iExo-
somes will be delivered intravenously on days 1, 4, and 10 and repeated every 14 days for
three courses of treatment for patients with Stage IV pancreatic ductal adenocarcinoma,
harbouring the KrasG12D mutation [94].

6.3. Alzheimer’s Disease

The ability of MSC-EVs to cross the blood brain barrier means they could treat neu-
rodegenerative diseases, such as AD [42]. EVs can directly internalise β-amyloid for
lysosomal clearance [81], or transfer an insulin-degrading enzyme [95] or small interfering
RNA [96] to reduce β-amyloid production, which is considered pathogenic in AD. A phase
I/II trial (NCT04388982) is currently investigating the safety and efficacy of 5 µg, 10 µg, or
20 µg of allogenic adipose-MSC-exosomes administered to patients with AD twice a week
for three months [82].

6.4. Ischaemic Stroke

As a result of shared risk factors, patients with Stage 4 CKD are twenty times more
likely to die prematurely from cardiovascular events than progressing to end-stage kidney
failure [9,20]. Preclinical studies in mice showed that miR-124-enriched exosomes induced
neurogenesis, protected against ischaemic injury, and prevented post-ischaemic immuno-
suppression [84]. In an ongoing Phase II/III trial (NCT03384433), BM-MSC-exosomes,
loaded with miR-124, will be administered to the ischaemic area one month following the
stroke and the patient’s neurological outcome will be assessed one year later [83].

6.5. ARDS and COVID-19

The anti-inflammatory effect of MSC-exosomes is being investigated in coronavirus
(SARS-CoV-2) pneumonia and acute respiratory distress syndrome (ARDS), where only
supportive care exists [87]. A few clinical trials are currently investigating the efficacy of
aerosol inhalation of allogenic adipose-MSC-exosomes in the treatment of ARDS over seven
days (NCT04602104) [88] and intravenous delivery of an escalating dose of MSC-exosomes
over five days in COVID-19 pneumonia (NCT04798716) [89]. The mechanism by which
EVs elicit their immunomodulatory effects and whether they would be suitable therapeutic
candidates is yet to be determined [97].

7. Nephroprotective Role of MSC-EVs in AKI

Multiple animal models have demonstrated that MSC-EVs can ameliorate AKI in-
duced by cisplatin, glycerol, gentamicin, or ischaemic-reperfusion injury (IRI) [43,98,99].
Given the heterogeneous nature of MSC-EVs, it currently remains unknown which sub-
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types provide renoprotection, so the efficacy of MVs, MPs, and exosomes in rodent AKI
will all be discussed (Table 2).

7.1. Tubular Proliferation and Dedifferentiation

Biodistribution analyses illustrate that MSC-EVs specifically accumulate at the site
of injury and their cargo of growth factors determines regenerative capacity [100]. In
glycerol- [101] or cisplatin-triggered [102] AKI and IRI [53,103,104], MSC-MVs delivered
mRNA of the mesenchymal phenotype or IGF-1 receptor [102] to proximal TECs and
this induced expression of hepatocyte growth factor (HGF) and macrophage-stimulating
protein (MSP). This promoted proliferation and dedifferentiation of proximal TECs. Simi-
larly, BM-MSC-EVs, enriched with pro-regenerative miRNA (miR-10a, miR-486), induced
TEC proliferation, reduced BUN, creatinine, and proteinuria, and improved renal function
following glycerol-triggered AKI [105]. Additionally, activation of the ERK1/2 pathway
and downregulation of p38 MAPK signalling was attributed to increased cell proliferation
and the reversal of cisplatin-mediated damage in kidneys treated with umbilical-MSC-
exosomes [106] and BM-exosomes [107,108].

7.2. Inhibition of Apoptosis

Numerous studies show EVs protect tubular cells from apoptosis [32,98,101,104,109–121]
and necrosis [98,105,106,109,122,123] following AKI. In severe combined immunodeficient
(SCID) mice with cisplatin-induced AKI, a single injection of MSC-MVs increased survival
to 40% at three weeks, compared to 100% mortality within five days of receiving the vehi-
cle [109]. Multiple injections of MVs improved survival to 80% and restored renal function,
indicating the dose response relationship. The mechanism of renoprotection was attributed
to the upregulation of anti-apoptotic genes (Bcl-2, Bcl-xL, BIRC8) and downregulation
of executioner genes (Caspase-1,-3,-8, lymphotoxin-α), thereby inhibiting apoptosis of
proximal TECs [106]. Furthermore, BM-MSC-exosomes delivered miR-199a-3p into mice
with IRI and suppressed apoptosis by downregulating Bax, Caspase-3, and the semaphorin,
Sema3A [112]. Blocking Sema3A also led to activation of the Akt and ERK pathways
for cell proliferation and offered protection against AKI. Similarly, BM-MSC-exosomes
secreted miR-199a-5p, which targeted binding immunoglobulin protein (BIP) to inhibit
endoplasmic reticulum stress in IRI within 8–16 h [123]. Another study demonstrated Whar-
ton’s jelly MSC-EVs delivered miR-30b/c/d to injured TECs and mitigated DRP1-induced
mitochondrial fragmentation caused by IRI and abrogated apoptosis [120].

7.3. Angiogenesis

The horizontal transfer of proangiogenic factors, such as vasculogenic growth factor
(VEGF-A), IGF-1, and basic fibroblast growth factor (bFGF) from MSC-EVs to resident cells
mediates nephroprotection by EVs [108,111,113,124]. The downregulation of HIF-1α led to
increased density and perfusion of renal capillaries, thereby reducing hypoxia [111].

7.4. Anti-Oxidation

During ischaemia, ATP levels rapidly fall, whilst intracellular calcium, protons, and
reactive oxygen species (ROS) levels and lactic acid rise [125,126]. Increased mitochondrial
membrane permeability and release of lysosomal enzymes cause breakdown of TECs.
BM-MSC-EVs reduced ischaemic damage in isolated rat kidneys by upregulating enzymes
involved in cellular metabolism (Calbindin1) and ion membrane transport (Slc16a1, vac-
uolar H+-ATPase d2 subunit) [74]. Calbindin1 sequesters excess calcium and reduces
ROS and apoptosis [127]. Slc16a1 encodes for monocarboxylate transporter 1 and exports
accumulated lactic acid [128]. Additionally, H+-ATPase pumps protons across the cell
membrane and this reduces intracellular acidosis [129]. Therefore, EV-treated kidneys had
lower glucose but higher pyruvate levels compared to ischaemic kidneys [74], indicating
the important anti-oxidant activity of EVs [126].
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The anti-oxidant activity of EVs may involve upregulation of nuclear factor E2-related
factor (Nrf2) [130], which is a transcription factor binding anti-oxidant response elements
and improves the expression of ROS scavenging enzymes, such as superoxide dismutase
(SOD) and heme oxygenase-1 (HO-1) [131]. Wharton’s jelly MSC-EVs [130] and -MVs [119]
alleviated oxidative stress in rats with unilateral kidney ischaemia and IRI, respectively, by
downregulating NOX2 expression, which is a NADPH oxidase generating ROS. The au-
thors hypothesised that miRNA delivered by EVs activated Nrf2 [130] or suppressed NOX2
expression [119]. Another IRI study supports this mechanism where human placenta-MSC-
EVs delivered a cargo of miR-200a-3p to TECs [132]. The miRNA downregulated Keap1,
freeing Nrf2 for nuclear translocation and promoted SOD2 expression. This reinforced
antioxidant defence, increased ATP production, and protected TECs from mitochondrial
fragmentation.

Melatonin is a strong scavenger of ROS and exosomes derived from MSCs condi-
tioned with melatonin reduced oxidative stress within three days of IRI [133]. Exosomes
carried RNA that downregulated expression of ROS such as malondialdehyde, HIF-1α,
and NOX2, and upregulated anti-oxidant molecules (HO-1, SOD, catalase, glutathione
peroxidase) [113].

7.5. Immunomodulation

The anti-inflammatory effects of EVs can be attributed to their paracrine delivery of
immunomodulatory molecules or expression of surface proteins that minimises infiltration
of immune cells, such as macrophages, T cells, and NK cells [134]. BM-MSC-exosomes
downregulated pro-inflammatory cytokines (IL-6, IL-1β, IFN-γ, TNF-α) and stimulated
anti-inflammatory cytokines (IL-10) in rodents with IRI [113], unilateral ureteral obstruction
(UUO) [135], or gentamicin- [98] or cisplatin-induced AKI [107,108,136]. Additionally,
umbilical-MSC-exosomes upregulated miR-146b, leading to reduced IRAK1 expression
and NF-κB transcriptional activity in TECs in mice with sepsis-associated AKI [137]. By
dampening the cytokine storm of sepsis, exosomes alleviated AKI and improved survival
from 28% to 45% at day three. Recent studies have demonstrated the synergistic role of
pulsed focused ultrasound and BM-MSC-EVs in reducing HSP70 expression and inhibiting
activation of the NRLP3 inflammasome and its pro-inflammatory cytokines (IL-1β, IL-18)
in cisplatin-induced AKI [108,136].

As mentioned earlier, Wharton’s jelly MSCs exert greater immunomodulatory activity
than other sources of MSCs [35,36]. A single injection of Wharton’s jelly MSC-MVs deliv-
ered miR-15a/-15b/-16 to rats with IRI and this suppressed CX3CL1 expression and CD68+
macrophage infiltration [110,118]. Furthermore, surface expression of CCR2 by exosomes
could sequester its extracellular ligand, CCL2, and interfere with macrophage recruitment
in IRI [134]. Additional studies demonstrated Wharton’s jelly MSC-EVs decrease NK cell
infiltration in ischaemic kidneys through downregulation of CX3CL1 and TLR2 expres-
sion [138]. This immunomodulation was preserved in rats with a splenectomy, indicating
the spleen was not necessary for EVs to mediate renoprotection, unlike MSCs.

In summary, MSC-EVs ameliorate AKI by inducing tubuloepithelial regeneration and
angiogenesis, and dampening apoptosis, oxidative stress, and inflammation [4,139].
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Table 2. Comparison of EVs subtypes from various sources of MSCs in treating rodent models of AKI. Molecules critical for MSC-EVs to mediate nephroprotection are emboldened. Up (↑)
indicates increased, and down (↓) indicates decreased levels or activity.

MSC Source In Vivo Model EV Subtype Dose Administration Pathophysiological Effects Mechanism of Action Ref.

Bone marrow Glycerol EVs Single: 200 µg Intravenous EVs accumulate specifically in injured kidneys [100]

Bone marrow Glycerol MVs Single: 15 µg Caudal vein

MVs accumulated within lumen of
injured tubules
↑ proliferation
↓ apoptosis

↑ tubuloepithelial regeneration

Delivery of HGF, MSP [101]

Bone marrow Glycerol EVs Single: 16.5 × 107

or 8.25 × 107 Intravenous

Pro-regenerative miRNA-enriched EVs are superior to naïve EVs
at lower doses
↓ BUN, creatinine
↓ necrosis

Pro-regenerative miRNA: miR-10a,
miR-486, miR-127 [105]

Bone marrow Cisplatin MVs
Multiple: 100 µg,

then 50 µg days 2, 6,
10, 14, 18

Intravenous

↓ apoptosis, necrosis
↑ proliferation
↓mortality

Did not prevent chronic tubular injury at 3 weeks

↓ Caspase-1,8, lymphotoxin-α
↑ Bcl-2, Bcl-xL, BIRC8 [109]

Bone marrow Cisplatin EVs Single: 150 µg Intra-arterial
kidney

↓ BUN, creatinine
↓ tubular cast formation

↑ proliferation
↓ inflammation

↓ IL-6, TNF-α, NF-κB [107]

Bone marrow Cisplatin EVs
Single: 200 µg/100
g body weight on

day 3
Intraperitoneal

Combined pre-treatment with pulsed
focused ultrasound on d2
↓ BUN, creatinine

↓ tissue damage (KIM-1, NGAL)
↓ inflammation

↓ HSP70, HSP90 activation of NLRP3
inflammasome
↓ IL-1β, IL-18

[136]

Bone marrow Cisplatin EVs
Single: 150 µg/100
g body weight on

day 3
Caudal vein

Pulsed focused ultrasound
pre-treatment

↓ tissue damage (KIM-1, TIMP-1)
↑ proliferation
↑ angiogenesis
↓ apoptosis
↓ inflammation

↑ ERK signalling
↑ PI3K/Akt

↑ VEGF, PCNA, survivin
↑ SIRT3, eNOS
↓ Caspase-3, Bax
↓ TNF-α, IL-6, IL-1β

[108]

Bone marrow Gentamicin Exosomes Multiple: 100 µg Caudal vein
↓ apoptosis, necrosis
↑ proliferation
↓ inflammation

Unknown RNA
↓ IL-6, IFN-γ, TNF-α; ↑ IL-10 [98]

Bone marrow IRI Exosomes Single: 200 µg Renal capsule ↓macrophage infiltration
↓ inflammation

CCR2 expression on
exosomes suppress CCL2 activity [134]
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Table 2. Cont.

MSC Source In Vivo Model EV Subtype Dose Administration Pathophysiological Effects Mechanism of Action Ref.

Bone marrow IRI

Exosomes
precondi-

tioned with 5
µM

melatonin

Single: 250 µg Perfusion

↓ BUN, creatinine
↓ apoptosis

↓ oxidative stress
↓ inflammation
↑ regeneration
↑ angiogenesis

Melatonin:
↓ Caspase-3, Bax, PARP1; ↑ Bcl-2
↓ ROS: MDA, HIF-1α, NOX2

↑ anti-oxidants (HO-1, SOD, CAT, GPX)
↓MPO activity, ICAM-1, IL-1β, NF-κB; ↑

IL-10
↑ bFGF, HGF, Sox9, VEGF

[113]

Bone marrow IRI
Exosomes

enriched with
miR-199a-3p

Single: 5 × 105 Caudal vein ↓ apoptosis
↓ Sema3A and reactivate Akt and ERK

pathways
↓ Caspase-3

[112]

Bone marrow IRI
Exosomes

enriched with
miR-199a-5p

Single: 5 × 105 Caudal vein ↓ endoplasmic reticulum stress at 8–16 h after reperfusion
↓ apoptosis Targets BIP [123]

Bone marrow IRI,
nephrectomy EVs Single: released

from 3 × 106 MSCs Perfusion ↓ ischaemic damage
↑ Expression of proteins in membrane

transport and homeostasis (Calb1,
Slc16a1, vaculor H+-ATPase d2 subunit)

[74]

Bone marrow UUO EVs Single: 0.5 mg/kg Intravenous

↓ inflammation
↓macrophage infiltration (ED-1+)
↓mitochondrial damage
↓ oxidative stress
↓ apoptosis
↓ fibrosis

Delivered MFG-E8 to inhibit
RhoA/ROCK pathway
↓ IL-1β, TNF-α, IL-6

↓MDA; ↑ anti-oxidants (SOD, CAT)
↓ Caspase-3, PARP1

↓ α-SMA, ↓fibronectin, ↑E-cadherin

[135]

Umbilical cord Cisplatin Exosomes Single: 200 µg Renal capsule
↓ apoptosis, necrosis
↓ oxidative stress
↑ proliferation

↓ Caspase 3
↓ p38 MAPK pathway [106]

Umbilical cord Cisplatin Exosomes Single: 200 µg Renal capsule

↑ autophagy: ↑LC3B
↓ BUN, creatinine after 3d

↓ apoptosis
↓ inflammation

↓mTOR activity
↓ Bax, ↓ Caspase-3; ↑ Bcl-2, Bcl-XL

↓ IL-1β, IL-6, TNF-α
[114]

Umbilical cord Cisplatin Exosomes Single: 200 µg Renal capsule
↑ autophagy

↓ BUN, creatinine after 3d
↓ apoptosis

Delivered 14–3-3ζ to ↑ autophagy via
promoting the localisation of ATG16L

↓ Caspase 3
[115]

Umbilical cord IRI
EVs overex-

pressing
Oct4

Single: 100 µg Caudal vein

↓ BUN, creatinine
↓ apoptosis
↑ proliferation
↓ fibrosis

Oct4 inhibited fibrosis (↓ SNAIl, α-SMA) [117]
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Table 2. Cont.

MSC Source In Vivo Model EV Subtype Dose Administration Pathophysiological Effects Mechanism of Action Ref.

Umbilical cord
Sepsis (caecal
ligation and
puncture)

Exosomes Single: 120 µg Caudal vein

↓ BUN, creatinine
↓ apoptosis
↓ inflammation

↑ survival (45% vs. 28% control)

Upregulation of miR-146b ↓ IRAK1 and
↓ NF-κB expression
↓ IL-1β, TNF-α

[137]

Wharton’s jelly IRI MVs Single: 100 µg Caudal vein

↓ BUN, creatinine
↓ apoptosis

↑ tubular cell proliferation
↓ inflammation

↓ CD68+ macrophage infiltration
↓ fibrosis

Delivery of miRN-15a/-15b/-16 reduced
CX3CL
↓ α-SMA

[110]

Wharton’s jelly IRI MVs Single: 100 µg Caudal vein

↓ oxidative stress
↓ apoptosis
↑ proliferation
↓ fibrosis

↓ NOX2 expression, ↓ ROS levels
↓ α-SMA [119]

Wharton’s jelly IRI MVs Single: 30 µg Caudal vein ↑ tubular cell dedifferentiation and growth ↑ HGF RNA [103]

Wharton’s jelly IRI MVs Single: 100 µg Intravenous

↑ survival
↓ BUN, creatinine
↓ apoptosis
↑ proliferation
↓ inflammation

↓ CD68+ macrophage infiltration
↓ fibrosis

↓ TNF-α; ↑ IL-10
↓ α-SMA, TGF-β1

↑ HGF
[118]

Wharton’s jelly IRI EVs Single: 100 µg Intravenous ↓ BUN, creatinine after 24 h
↓ NK cells in kidney without the involvement of the spleen ↓ CX3CL1, TLR2 [138]

Wharton’s jelly IRI EVs Single: 100 µg Caudal vein ↑ angiogenesis
↓ fibrosis

Delivery of VEGF and its RNA;
↓ HIF-1α, α-SMA [124]

Wharton’s jelly IRI EVs Single: 100 µg Caudal vein ↓mitochondrial fission
↓ apoptosis Delivery of miR-30b/c/d [120]

Wharton’s jelly IRI EVs Single: 100 µg Caudal vein ↓ oxidative stress↓ renal cell injury (↓NGAL)
↓ apoptosis

↑ Nrf2/ARE activation
↑ ROS scavenging enzymes (HO-1) [130]

Renal IRI EVs Single: 4 × 108 Intravenous
EVs detected in ischaemic kidneys within 1 h

↓ BUN, creatinine
↑tubular cell proliferation

Identified 62 miRNAs [53]

Renal IRI EVs Single: 2 × 107 Caudal vein
↓ apoptosis

↑ peritubular capillary endothelial cell proliferation
↑ angiogenesis

Selective engraftment in ischaemic
kidneys

Delivery of VEGF-A, bFGF, IGF-1
[111]
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Table 2. Cont.

MSC Source In Vivo Model EV Subtype Dose Administration Pathophysiological Effects Mechanism of Action Ref.

Adipose IRI Exosomes Single: 100 µg Intravenous

Combined ADMSC and exosome therapy is superior to
monotherapy:
↓ proteinuria

↓ kidney injury score

[140]

Adipose
Sepsis (caecal
ligation and
puncture)

Exosomes Single: 100 µg Caudal vein

↓ inflammation
↓ inflammatory cell infiltration

↓ apoptosis
↓mortality

↑ SIRT1 inhibited NF-κB and its
inflammatory activity
↓ TNF-α, IL-6, MCP-1
↓ Bax, ↓ Caspase-3; ↑ Bcl-2

[141]

Human
induced

pluripotent
stem cells

IRI EVs Single: 1 × 1012 Intravenous ↓ necroptosis Delivery of SP1 to renal cells [122]

Human
placenta-
derived

IRI EVs Single: 80 µg Intravenous

EVs specifically accumulated in
ischaemic kidney and taken up by

proximal TECs
↑mitochondrial antioxidant defence
↓mitochondrial fragmentation

Keap1-Nrf2 pathway- ↑ SOD2, ↑ATP
production [132]

Human
placenta-
derived

IRI EVs Multiple: 100 µg
daily for 3 days

EVs travelled to injured kidneys
↑ proliferation and regeneration

↓ BUN, creatinine
↓ apoptosis
↓ fibrosis d28

↑ Sox9+ expression in tubular epithelial
cells

↓ α-SMA, fibronectin, collagen I, TGF-β1
[142]

Abbreviations: MSC: mesenchymal stem cell; AKI: acute kidney injury; EVs: extracellular vesicles; MVs: microvesicles; miR: miRNA; HGF: hepatocyte growth factor; MSP: macrophage-stimulating protein; BUN:
blood urea nitrogen; Bcl-2: B-cell lymphoma 2; Bcl-xL: B-cell lymphoma-extra-large; BIRC8: baculoviral IAP repeat containing 8; IL-6: interleukin-6; TNF-α: tumour necrosis factor alpha; NF-κB: nuclear factor
kappa-light-chain enhancer of activated B cells; KIM-1: kidney injury molecule-1; NGAL: neutrophil gelatinase-associated lipocalin; HSP: heat shock protein; NRLP3: NLR family pyrin domain containing 3; ERK:
extracellular signal-regulated kinase; PI3K: phosphoinositide 3-kinase; Akt: protein kinase B; TIMP-1: tissue inhibitor matrix metalloproteinase 1; VEGF: vascular endothelial growth factor; PCNA: proliferating
cell nuclear antigen; SIRT3: sirtuin 3; p-eNOS: phosphorylated endothelial nitric oxide synthase; IRI: ischaemia-reperfusion injury; IFN-γ: interferon-γ; CCR2: C-C motif chemokine receptor type 2; CCL2:
C-C motif chemokine ligand 2; PARP1: poly [ADP-ribose] polymerase 1; ROS: reactive oxygen species; MDA: malondialdehyde; HIF-1α: hypoxia-inducible factor 1 alpha; NAPDH: nicotinamide-adenine
dinucleotide phosphate; NOX2: NADPH oxidase 2; HO-1: haeme oxygenase 1; SOD: superoxide dismutase; CAT: catalase; GPX: glutathione peroxidase; MPO: myeloperoxidase; ICAM-1: intercellular adhesion
molecule 1; bFGF: basic fibroblast growth factor; Sox9: SRY-box transcription factor 9; Sema3A: semaphorin-3A; BIP: binding immunoglobulin protein; Calb1: calbindin 1; Slc16a1: solute carrier family 16 member
1; UUO: unilateral ureteral obstruction; MFG-E8: milk fat globule-EGF factor 8 protein; RhoA: Ras homolog family member A; ROCK: Rho-associated protein kinase; α-SMA: alpha smooth muscle actin; MAPK:
mitogen-activated protein kinase; LC3: microtubule-associated protein light chain 3; mTOR: mammalian target of rapamycin; ATG16L: autophagy related 16 like 1; CX3CL: C-X3-C motif chemokine ligand 1;
TLR: toll-like receptor; Oct4: octamer-binding transcription factor 4; SNAI1: snail family transcriptional repressor 1; IRAK1: interleukin-1 receptor associated kinase 1; CD68: cluster of differentiation; TGF-β:
transforming growth factor beta; ROS: reactive oxygen species; Nrf2: nuclear factor erythroid 2-related factor 2; ARE: antioxidant response element; IGF-1: insulin growth factor-1; ADMSC: adipose-derived
mesenchymal stem cell; MCP-1: monocyte chemoattractant protein-1; SP1: proximal specificity protein 1; TEC: tubular epithelial cells; ATP: adenosine triphosphate; Keap1: Kelch-like ECH-associated protein 1.
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8. Anti-Fibrotic Effect of MSC-EVs in CKD

Renal glomerulosclerosis and tubulointerstitial fibrosis are hallmarks of diabetic
nephropathy and indeed all types of CKD [4]. MSC-EVs promote tissue regeneration
by targeting kidney fibrosis, reducing tubular atrophy and inflammation, and facilitating
angiogenesis to abrogate pathogenic insults in CKD (Table 3).

8.1. Downregulate Pro-Fibrotic Gene Expression and the EMT

TGF-β is a key inducer of the EMT in CKD [12]. In β-integrin signalling, TGF-β
forms a complex with Smad and binds transcription factors, such as Snail, to downregulate
expression of epithelial cell markers (E-cadherin), and activate expression of fibrosis-
associated stromal cell markers (α-SMA, fibronectin, collagen I) [143]. Erythropoietin
(EPO)-transfected microparticles in mice with UUO [144,145], Wharton jelly’s MSC-EVs in
cyclosporin A injury [146], and adipose-MSC-EVs in renal artery stenosis [147] all inhibited
the EMT and tubulointerstitial fibrosis by downregulating phosphorylated Smad2, Smad3,
and p38 MAPK signalling, and increasing E-cadherin.

The anti-fibrotic mechanism of MSC-EVs is mediated through the transfer of miRNA
targeting fibrosis-associated genes [4,54,116,117,148]. For example, MSC-exosomes deliv-
ered miRNA-let7c to mouse TECs with UUO and downregulated the expression of collagen
IVα1, metalloproteinase-9 (MMP9), α-SMA, and TGF-β1 and its receptor [149]. Similarly,
NOD SCID gamma mice with streptozotocin (STZ)-induced T1DM were treated with
BM-MSC-EVs and their cargo of miRNA suppressed fibrotic (collagen I, MMP3, TIMP1)
and apoptotic (FasL, Serpina1a) gene expression [54]. Umbilical-MSCs-MVs, enriched
with miR-451a, reversed the EMT in STZ-induced diabetic nephropathy by increasing
E-cadherin expression and reducing fibrosis [150]. The shuttled miR-451a targeted the
3′UTR sites of cell cycle inhibitors, P15INK4b and P19INK4d, enabling a resumption of
the blocked cell cycle and amelioration of the EMT. In aristolochic acid-induced herbal
nephropathy, BM-MSC-EVs reduced tubular necrosis and interstitial fibrosis by suppress-
ing expression of fibrotic genes (α-SMA, TGF-β1, collagen Iα1) [151]. This was postulated
by MSC-EVs downregulating various miRNAs (miR21-5p, 34a-5p, 34c-5p, 132-3p, 212-
3p, 214-3p, 342-3p) that mediate fibrosis, inflammation, and apoptosis. Hence, EVs can
revert the progression of tubulointerstitial fibrosis and the EMT and restore function in
CKD [16,54,152].

8.2. Reduce Tubular Atrophy

EVs exhibit anti-apoptotic activity to prevent the transition of AKI into CKD [109,145,153].
Six months following treatment with umbilical-MSC-MVs, rats with IRI showed dwindling
tubular atrophy, improved functioning, and decreased glomerular ECM accumulation
and fibrosis [104]. Reduced-to-absent tubular atrophy and repaired renal morphology
were also observed in mice with 5/6 subtotal nephrectomy treated with MSC-MVs [153].
Furthermore, BM-MSC-EVs reduced degeneration, vacuolisation, tubular cyst formation,
and atrophic changes of proximal TECs in mice with T1DM, T2DM [16], or cyclosporin
nephrotoxicity [154].

8.3. Vascular Regeneration

Urinary MSC-exosomes delivered VEGF, TGF-β1, angiogenin, and BMP7 for vas-
cular and tubular regeneration in STZ-induced T1DM [121]. Renal MSC-microparticles
offered similar protection by attenuating TGF-β1-induced endothelial-to-mesenchymal
transition of PTC, thereby improving capillary density and reducing fibrosis in kidneys
with UUO [155].

A high cholesterol/fructose diet induces Metabolic Syndrome that not only increases
the risk of CKD progressing to end-stage kidney failure [156], but also hinders the pro-
liferative and differentiation potential of MSCs [157]. In a swine model of unilateral
renovascular disease and Metabolic Syndrome, autologous adipose-MSC-EVs, enriched
with pro-angiogenic factors (VEGF-A,C, VEGF receptor, angiopoietin-like 4, HGF), were
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internalised by tubular and endothelial cells within four weeks and improved cortical
microvascular density, renal blood flow, and GFR [158].

8.4. Anti-Inflammatory

Intercellular adhesion molecule 1 (ICAM-1) is a glycoprotein expressed by TECs and
PTCs to support the recruitment of inflammatory cells into injured kidneys [159]. In T1DM
and T2DM mice, BM-MSC-exosomes reduced expression of ICAM-1 in PTCs and reversed
infiltration of dendritic cells, thereby preventing the development of diabetic nephropa-
thy [16]. Additionally, BM-MSC-EVs downregulated CCL3 and hindered recruitment of
macrophages and T cells [54,160]. Another study demonstrated that adipose-MSC-EVs
delivered miR-26a-5p to inhibit TLR4 and the NF-κB/VEGFA inflammatory pathway,
thereby alleviating diabetic nephropathy [161]. BM-MSC-EVs reduced TNF-α expression
and inflammation, leading to an improvement in CKD outcomes [16].

TGF-β induces gene expression of forkhead box-P3 (FoxP3) to create a population of
regulatory CD4+ T cells (Tregs) that police excessive inflammation and this can be utilised
to ameliorate CKD [162]. For example, MSC-EVs, harvested from lean pigs, upregulated
TGF-β expression and induced Treg differentiation in pigs with Metabolic Syndrome and
unilateral renal artery stenosis, thereby decreasing inflammation and tubulointerstitial
fibrosis [163]. Lean-EVs shifted the balance of macrophages from a pro-inflammatory M1
to anti-inflammatory M2 phenotype, and reduced the numbers of cytotoxic CD8+ T cells
and IL-1β expression. By contrast, MSC-EVs, derived from pigs with Metabolic Syndrome,
failed to alleviate CKD. This indicates the importance of the source and phenotype of MSC-
EVs, where Metabolic Syndrome altered the cargo of 19 mitochondria-related miRNAs and
therefore impaired the therapeutic efficacy of EVs [164].

Ultimately, MSC-EVs offer nephroprotection against CKD through reversing fibro-
sis, reducing the EMT, inhibiting apoptosis, promoting angiogenesis, and suppressing
inflammation.

Table 3. Comparison of EVs subtypes from various sources of MSCs in treating rodent models of CKD. Molecules critical
for MSC-EVs to mediate nephroprotection are emboldened. Up arrow (↑) indicates increased and down arrow (↓) indicates
decreased levels or activity.

MSC
Source In Vivo Model EV

Subtypes Dose Administration Pathophysiological Effects Mechanism of Action Ref.

Bone
marrow IRI MVs Single: 30 µg Intravenous

↓ BUN, creatinine, proteinuria
↓ fibrosis, ↓glomerular matrix

accumulation
↓ interstitial lymphocyte infiltrate

↓ tubular atrophy

Dependent on RNA cargo [104]

Bone
marrow Chronic CsA EVs

Multiple: 100 µg
Preventive: 24 h

after CsA, weekly
for 4 weeks

Curative: 2 weeks
after CsA, weekly

for 4 weeks

Intraperitoneal

Greater improvement when
administered

after damage (curative regime),
rather than

prophylactically
↓ tubular casts

↓ PAI-1, TIMP-1, IFN-γ [154]

Bone
marrow

Aristolochic
acid EVs Single: 1 × 1010 on

day 3 Intravenous

↓ BUN, creatinine
↓ necrosis

↓ CD45+ immune cells, fibroblast,
pericyte

infiltration
↓ interstitial fibrosis

Downregulation of
hsa-miR-21-5p, 34a-5p,
34c-5p, 132-3p, 214-3p,

342-3p; and
mmu-miR-212-3p
Upregulation of

hsa-miR-194-5p, 192-5p;
and mmu-miR-378-3p
↓ α-SMA, TGF-β1,

collagen Iα1

[151]

Bone
marrow

5/6 subtotal
nephrectomy MVs Multiple: 30 µg,

days 2, 3, 5 Caudal vein

↓ BUN, creatinine, uric acid,
proteinuria

prevent fibrosis
↓ tubular atrophy

↓ interstitial lymphocyte infiltrate

[153]

Bone
marrow UUO MVs Single: 30 µg Caudal vein ↓ BUN, creatinine

↓ fibrosis
↓ TGF-β1, α-SMA
↑ E-cadherin [152]



Int. J. Mol. Sci. 2021, 22, 6596 14 of 27

Table 3. Cont.

MSC
Source In Vivo Model EV

Subtypes Dose Administration Pathophysiological Effects Mechanism of Action Ref.

Bone
marrow UUO

Exosomes
enriched

with
miR-let7c

Single: released
from 1 × 106 MSCs Intravenous Exosomes home to injured kidneys

↓ fibrosis

Delivery of miRNA-let7c
↓ collagen, MMP-9, α-SMA,

TGF-βR1
[149]

Bone
marrow

Type 2
diabetes,

STZ Type 1
diabetes

Exosomes Single: 5.3 × 107 Renal
subcapsular

↓ degeneration, vacuolation and
tubular atrophy
↓ EMT

↓ ICAM-1-mediated interstitial
inflammatory infiltration

↓ TGF-β
↓ TNF-α [16]

Bone
marrow

STZ Type 1
diabetes Exosomes Single: 100 µg Intravenous

↑ Autophagy: ↑ LC3-II, Beclin-1
↓ BUN, creatinine, blood glucose,

proteinuria at 10 and 12 weeks
↓ fibrosis

↓mTOR activity
↓ collagen, TGF-β [165]

Bone
marrow,

Liver

STZ Type 1
diabetes EVs Multiple: 1 × 1010 Intravenous

↓ BUN, creatinine
↓ fibrosis, ↓ EMT

↓ inflammatory cell recruitment

↓ collagen I, MMP3, TIMP1,
FasL, Serpina1a, SNAI1

↓ CCL3
[54]

Umbilical
cord

STZ-induced
DN with hype-

ruricaemia

MVs
enriched

with
miR-451a

Single: 1.5 mg/kg Caudal vein

↓ BUN, creatinine
↓ fibrosis, ↓ EMT

↑ proliferation and removed arrest
on cell
cycle

↓ α-SMA, ↑ E-cadherin
miR-451a targeted 3′UTR

sites of cell cycle inhibitors
(P15INK4b, P19INK4d)

[150]

Umbilical
cord UUO Exosomes Single: 200 µg Intravenous ↓ tubulointerstitial fibrosis

Exosomes delivered casein
kinase 1δ and E3 ubiquitin
ligase β-TRCP to degrade

YAP

[166]

Umbilical
cord UUO Exosomes Single: 200 µg Intra-arterial

kidney

↓ BUN, creatinine
↓ apoptosis

↓ oxidative stress
↓ tubulointerstitial fibrosis

↓ ROS-mediated p38
MAPK/ERK signalling

pathway
↓ ROS: MDA

↑ anti-oxidants: GSH

[145]

Wharton’s
jelly CsA EVs Multiple: 100 µg at

day 7, 21 Intravenous
↓ creatinine

↓ fibrosis, ↓ EMT
↓ oxidative stress

↓ α-SMA
↓ ROS: MDA

↑ anti-oxidants: SOD
[146]

Renal UUO MPs Single: 2 × 107 Caudal vein

↓ EndoMT of PTC endothelial cells
↓ PTC rarefaction

↓ F4/80+ inflammatory cell
infiltration

↓ tubulointerstitial fibrosis

↓ α-SMA [155]

Renal UUO
EPO-

enriched
MPs

Single: 80 µg Caudal vein

↓ tubulointerstitial fibrosis, ↓ EMT
↓myofibroblast and F4/80+

macrophage
infiltration

↓ phosphorylated Smad2,
Smad3, MAPK 38

expression to inhibit EMT
↓ α-SMA, fibronectin,

collagen

[144]

Adipose
(trans-

fected with
GDNF)

UUO Exosomes Single: 200 µg Caudal vein

↓ PTC rarefaction
↓ tubulointerstitial fibrosis
↑ endothelial function and

angiogenesis

GDNF: ↑ SIRT1/p-eNOS
pathway
↓ α-SMA

↑ VEGF, ↓ HIF-1α

[167]

Adipose IRI Exosomes Single: 100 µg Caudal vein

↑ tubular proliferation, regeneration
↓ TGF-β1-induced transformation
of TECs to pro-fibrotic phenotype
↓ AKI to CKD transition

↑ Sox9
↓ α-SMA, PDGFR-β [168]

Adipose Type 1
diabetes Exosomes Single: not stated,

12-week therapy Caudal vein ↓ BUN, creatinine, proteinuria
↑ autophagy, ↓ apoptosis podocytes

miR-486 reduced Smad1
expression, leading to ↓

mTOR activation

[169]

Adipose Hindlimb
Ischaemia

Melatonin-
stimulated
exosomes

CKD-MSCs treated
with 30 µg

exosomes, and 1 ×
106 cells injected

Injection into
ischaemic site

CKD-MSCs were treated with
melatonin-stimulated exosomes

and injected into mice
↑ neovascularisation
↑ functional recovery

Upregulation of miR-4516
↑ PrPc in exosomes [170]

Adipose
DN

(C57BL/KsJ
db/db)

EVs Single Caudal vein

↓ histopathology of DN, ↓ BUN,
creatinine

↓ VEGFA leads to ↓ podocyte
apoptosis

miR-26a-5p inhibited TLR4
and inactivated

NF-κB/VEGFA pathway (↓
IKKβ, IκBα, p65)

↓ Caspase-3, Bax, ↑ Bcl-2

[161]

Adipose

Unilateral
renovascular

disease on
background of

Metabolic
Syndrome

EVs Single: 1 × 107 Intra-renal
vein

↑ cortical microvascular, PTC
density
↑ RBF, GFR

↓ glomerular, tubulointerstitial
fibrosis
↓ apoptosis

↓ oxidative stress

Delivered proangiogenic
factors: VEGF-A,C, VEGF

receptor,
angiopoietin like 4, HGF

↓ Caspase-3
↓ ROS: superoxides, CD31,

nitro tyrosine

[158]
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Table 3. Cont.

MSC
Source In Vivo Model EV

Subtypes Dose Administration Pathophysiological Effects Mechanism of Action Ref.

Adipose

Unilateral
renal

artery stenosis
on

background of
Metabolic
Syndrome

EVs Single: 1 × 1010 Intrarenal
artery

EVs derived from lean pigs were
injected into pigs with Metabolic

Syndrome ↑ TGF-β induction of Tregs
↓ IL-1β [163]↑ anti-inflammatory M2

macrophages
↓ pro-inflammatory M1

macrophages
↓ CD8+ T cells

Adipose

Unilateral
renal

artery stenosis
on

background of
Metabolic
Syndrome

EVs Single: 1 × 1010 Intrarenal
artery

Metabolic Syndrome alters the
cargo of 19

mitochondria-related miRNA,
impairing

regenerative capacity

↑miR-196a, 132
↓miR-192, 320 [164]

Adipose
Unilateral

renal artery
stenosis

MVs,
exosomes Single: 100 µg Caudal vein

↓ HIF-1α
Stabilised systolic blood pressure
↓ proteinuria (MVs only)
↑ natriuresis (exosomes only)

↓ fibrosis
↓ inflammation

↓ collagen I, TGF-β
↑ IL-10 [147]

Urine STZ Type 1
diabetes Exosomes Multiple: 100 µg

weekly x × 12 Intravenous

↓ apoptosis of podocyte and
tubular cells

↑ glomerular endothelial cell
proliferation
↑ angiogenesis

↓ Caspase-3
Delivery of VEGF, TGF-β1,

angiogenin, BMP7
[121]

Abbreviations: MSC: mesenchymal stem cell; CKD: chronic kidney disease; EVs: extracellular vesicles; IRI: ischaemia-reperfusion injury;
MVs: microvesicles; BUN: blood urea nitrogen; CsA: cyclosporin A; PAI-1: plasminogen activator inhibitor-1; TIMP-1: tissue inhibitor
matrix metalloproteinase 1; IFN-γ: interferon-γ; α-SMA: alpha smooth muscle actin; TGF-β: transforming growth factor beta; miR: miRNA;
CD45: cluster of differentiation 45; UUO: unilateral ureteral obstruction; MMP: matrix metalloproteinase; STZ: streptozotocin; ICAM-1:
intercellular adhesion molecule 1; TNF-α: tumour necrosis factor alpha; EMT: epithelial-to-mesenchymal transition; LC3-II: microtubule-
associated protein light chain 3; mTOR: mammalian target of rapamycin; Sepina1a: serpin family A member 1; SNAI1: snail family
transcriptional repressor 1; CCL3: C-C motif chemokine ligand 3; DN: diabetic nephropathy; β-TRCP: β-transducin repeats-containing
protein; YAP: yes-associated protein; MAPK: mitogen-activated protein kinase; ROS: reactive oxygen species; MDA: malondialdehyde;
GSH: glutathione; SOD: superoxide dismutase; MPs: microparticles; EndoMT: endothelial-to-mesenchymal transition; PTC: peritubular
capillaries; EPO: erythropoietin; GDNF: glial cell line-derived neurotrophic factor; VEGF: vascular endothelial growth factor; Bcl-2: B-cell
lymphoma 2; Bax: Bcl-2-associated X protein; HIF-1α: hypoxia-inducible factor 1 alpha; Sox9: SRY-box transcription factor 9; TEC: tubular
epithelial cells; PDGFR: platelet-derived growth factor receptor; AKI: acute kidney injury; PrPc: cellular prion protein; TLR: toll-like
receptor; NF-κB: nuclear factor kappa-light-chain enhancer of activated B cells; HGF: hepatocyte growth factor; RBF: renal blood flow; GFR:
glomerular filtration rate; Tregs: regulatory T cells; IL-1β: interleukin-1β; BMP7: bone morphogenetic protein 7.

9. Biological Cargo Carried by MSC-EVs to Alleviate AKI and CKD

MSC-EVs can be engineered to carry different biomolecules and target the interplay
of signalling pathways responsible for AKI and CKD (Figure 2).

9.1. mTOR

The mechanistic target of rapamycin (mTOR) is a nutrient-sensing protein kinase that
suppresses autophagy and exacerbates podocyte damage in CKD, and its deactivation
represents a target for MSC-exosomes [171,172]. Umbilical-MSC-exosomes increased ex-
pression of the autophagic marker protein, LC3B, and this inhibited phosphorylation of
mTOR, thereby activating autophagy in cisplatin-triggered AKI [114] and STZ-induced
T1DM [165]. Similarly, miR-486 from adipose-MSC-exosomes targeted Smad1 and this
suppressed mTOR activity [169].
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Figure 2. Molecular and signalling mechanisms by which MSC-derived EVs elicit nephroprotection following AKI and
CKD. The cellular origin of one subtype of EVs, known as exosomes, from MVBs is shown. MSC-EVs deliver a cargo of
miRNA, proteins, cytokines, and growth factors to nearby injured renal cells and alter gene expression. This reprograms
pathophysiological pathways and promotes tubular proliferation and angiogenesis, and inhibits apoptosis, oxidative
stress, inflammation, and fibrosis to alleviate AKI and CKD. Green arrows represent promotion; red arrows represent
inhibition; up arrow (↑) indicates increased and down arrow (↓) indicates decreased levels or activity. MSC: mesenchymal
stem cell; MVB: multivesicular bodies; EVs: extracellular vesicles; HGF: hepatocyte growth factor; MSP: macrophage-
stimulating protein; IGF-1R: insulin growth factor-1 receptor; Sox9: SRY-box transcription factor; miR: miRNA; ERK:
extracellular signal-regulated kinase; MAPK: mitogen-activated protein kinase; SIRT: sirtuin 1; eNOS: endothelial nitric
oxide synthase; VEGF: vascular endothelial growth factor; VEGFR: VEGF-receptor; bFGF: basic fibroblast growth factor;
ANGPTL4: angiopoietin-like 4; BMP7: basic morphogenetic protein 7; HIF-1α: hypoxia-inducible factor 1 alpha; SP1:
proximal specificity protein 1; Bcl-2: B-cell lymphoma 2; Bcl-xL: B-cell lymphoma-extra-large; BIRC8: baculoviral IAP repeat
containing 8; Bax: Bcl-2-associated X protein; Sema3A: semaphorin-3A; BIP: binding immunoglobulin protein; PARP1:
poly [ADP-ribose] polymerase 1; Sepina1a: serpin family A member 1; mTOR: mammalian target of rapamycin; ROS:
reactive oxygen species; MDA: malondialdehyde; NOX2: NADPH oxidase 2; RhoA: Ras homolog family member A, ROCK:
Rho-associated protein kinase; SOD: superoxide dismutase; CAT: catalase; GPX: glutathione peroxidase; HO-1: haeme
oxygenase 1; Keap1: Kelch-like ECH-associated protein 1; Nrf2: nuclear factor erythroid 2-related factor 2; Calb1: calbindin
1; Slc16a1: solute carrier family 16 member 1; ATP: adenosine triphosphate; CCR2: chemokine receptor type 2; NF-κB:
nuclear factor kappa-light-chain enhancer of activated B cells; TNF-α: tumour necrosis factor alpha; IL-1β: interleukin-1β;
CX3CL1: C-X3-C motif chemokine ligand 1; CD68: cluster of differentiation 68; NK: natural killer cells; DC: dendritic cells;
Tregs: regulatory T cells; Oct4: octamer-binding transcription factor 4; EPO: erythropoietin; EMT: epithelial-to-mesenchymal
transition; ECM: extracellular matrix; TGF-β1: transforming growth factor β1; MMP: matrix metalloproteinase; TIMP-1:
tissue inhibitor matrix metalloproteinase 1; α-SMA: alpha smooth muscle actin; SNAI1: snail family transcriptional repressor
1; PDGFR-β: platelet-derived growth factor receptor β.
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9.2. 14-3-3ζ

14-3-3 is a family of adaptor proteins involved in regulating protein trafficking, cell
cycling, signal transduction, and apoptosis, and it operates synergistically with mTOR to
coordinate autophagy [173,174]. One isoform, 14-3-3ζ, offers protection from cell death
due to hypoxia, chemotherapy, and growth factor deprivation [175]. Umbilical-MSC-
exosomes, enriched with 14-3-3ζ, enhanced localisation of autophagy-related protein,
16L, to the outer surface of autophagosome precursors and this increased formation of
autophagosomes [115]. By 14-3-3ζ inducing autophagy, renal cells were protected from
apoptosis, cell proliferation increased, and this alleviated nephrotoxicity.

9.3. YAP

YAP is a transcription factor in the Hippo signalling pathway and co-localises with
α-SMA in the nucleus of TECs to promote fibrosis through an unclear mechanism [176].
Umbilical-MSC-exosomes delivered casein kinase 1δ and E3 ubiquitin ligase β-transducin
repeats-containing protein to trigger ubiquitination and degradation of YAP in TECs [166].
This reduced collagen and ECM deposition and attenuated fibrosis associated with UUO.

9.4. Oct-4

Oct-4 is known as one of the four transcription factors capable of reprogramming
fibroblasts into induced pluripotent stem cells (iPSCs) [177] and it can downregulate Snail
and the EMT [178]. Umbilical-MSC-EVs overexpressing Oct4 reduced apoptosis, promoted
TEC proliferation, and rescued mice with IRI from fibrosis within two weeks [117].

9.5. SP1

MSC-EVs from human iPSCs can deliver sphinganine-1-phosphate 1 (SP1) to PTCs
to directly bind the promoter region of sphingosine kinase 1 [122]. This increased SP1
expression and inhibited necroptosis in rats with IRI, elucidating a novel mechanism of
EVs in nephroprotection.

9.6. Sox-9

Sox-9 is a transcription factor of the sex-determining region Y box family and may
repair injured TECs [179]. Adipose-MSCs-exosomes upregulated Sox9 and prevented TGF-
β1-induced transformation of TECs into a pro-fibrotic phenotype in mice with IRI [168].
Increased Sox9 stimulated TEC proliferation, attenuated AKI, and protected the develop-
ment of tubulointerstitial fibrosis. Another study used two-photon microscopy to track
human placenta-MSC-EVs migrating to kidneys injured by IRI. MSC-EVs promoted Sox9
activation in TECs to stimulate regeneration and reduce fibrosis within four weeks [142].

9.7. SIRT1

Sirtuin 1 (SIRT1) is an NAD+-dependent deacetylase of the sirtuin family that is
expressed by various kidney cells during stress and inhibits inflammation, apoptosis, and
fibrosis [180]. In sepsis-induced AKI, adipose-MSC-exosomes inhibited NF-κB-mediated
transcription of pro-inflammatory cytokines in the SIRT1 pathway and reduced immune
cell infiltration and apoptosis [141]. Furthermore, glial cell line-derived neurotrophic factor
(GDNF) was transfected into adipose-MSCs, and their exosomes ameliorated fibrosis in
mice with UUO [167]. This was mediated by SIRT1 signalling and its downstream target,
phosphorylated endothelial nitric oxide synthase (p-eNOS), which activated endothelial
function and angiogenesis and reduced PTC loss. Upregulation of SIRT3/eNOS by BM-
MSC-EVs also improved angiogenesis and regeneration in cisplatin-triggered AKI [108].

9.8. MFG-E8

Milk fat globule-epidermal growth factor-factor 8 (MFG-E8) is a glycoprotein that
inhibits the RhoA/ROCK signalling pathway. BM-MSC-EVs delivered MFG-E8 to rats
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with UUO and reduced inflammation, macrophage infiltration, mitochondrial damage,
apoptosis, oxidative stress, and the EMT within two weeks [135].

9.9. Melatonin and PrPc

A recent study focused on the efficacy of melatonin in autologous MSC-based thera-
peutics for CKD [170]. Exposure of adipose-MSCs to melatonin upregulated expression of
miR-4516 and cellular prion protein (PrPC), and “MT exosomes” were harvested. Adipose-
MSCs were also collected from patients with CKD (CKD-MSCs) and incubated with MT
exosomes, which promoted proliferation, mitochondrial activity, and angiogenic proteins,
and protected cells from senescence. These MT exosome-treated CKD-MSCs improved
neovascularisation and functional recovery when administered to mice with hindlimb
ischaemia, which was mediated through miR-4516-PrPc signalling.

10. Conclusions

MSCs have shown increasing potential in immunomodulation and regenerative
medicine and their paracrine effects are mediated by the secretion of EVs [42,181–185].
MSC-EVs are advantageous over their counterpart whole cells due to a higher safety pro-
file, lower immunogenicity, and the inability to directly form tumours [42,181–185]. The
regenerative capacity of MSC-EVs is based on the cargo of biomolecules they deliver to
injured renal cells, particularly the types of miRNA and ncRNA [60]. To minimise the
level of reporting and publication bias in this review, multiple databases were searched,
and two extensive tables were created to methodologically analyse 34 preclinical animal
models of AKI and 26 of CKD. However, the heterogeneous nature of EVs means the
extrapolated results are difficult to generalise. It can be concluded that MSC-EVs induce
tubular proliferation, regeneration, and angiogenesis, and suppress apoptosis, oxidative
stress, inflammation, the EMT, and tubulointerstitial fibrosis. By altering the pathogenesis
of disease, MSC-EVs show promise in mitigating AKI and CKD and offering a novel
therapeutic for patients.

There are some limitations of this review. There is no consensus regarding the re-
porting of studies using EVs as it is an emerging therapeutic and there is a lack of global
standardisation in isolation, characterisation, and validation protocols [4,40,49]. Moreover,
there are no established methods to differentiate the subtypes of EVs and therefore studies
claiming to use a certain subtype cannot be verified and this makes comparison difficult.
Additionally, there are functional differences in efficacy between EV subtypes. A recent
study found adipose-MSC-MVs reduced proteinuria while only exosomes promoted na-
triuresis following chronic renal artery stenosis [147]. To minimise these effects, studies
were compared based on the ISEV recommendations, according to the source of MSCs, EV
subtype, protein content of administered EVs, and route of injection [49].

Furthermore, clinical translation is in its infancy and the conclusions are limited to
preclinical animal models. They are monocausal and simplistic when compared to the mul-
tifactorial aetiologies of CKD and comorbidities, such as increasing age and cardiovascular
disease, from which patients suffer [5]. Moreover, the selected animals are young and only
a short duration of disease (weeks—months) is observed. Therefore, there is an increasing
need for human clinical trials. In a phase II/III trial, twenty patients with Stage III and IV
CKD (eGFR 15–60 mg/mL) received two doses of umbilical-MSC-EVs (100 µg/kg/dose)
one week apart, and this increased eGFR and reduced serum creatinine, BUN, and urinary
albumin creatinine ratio within one year [186]. The clinical improvement was attributed to
increased anti-inflammatory cytokines and decreased TNF-α.

For translation of EV therapy to clinical practice, the following manufacturing issues
surrounding optimal dosing, mode of injection, schedule of administration, potency assays,
minimising dose toxicity, uniformity between batches, identification of EVs, and safety must
be standardised [4,40,187]. This is inherently difficult when considering the heterogeneity
of EVs, so each batch will display both donor and clone-specific differences [97,187]. Most
studies used a single dose of EVs, but this may be insufficient to achieve a sustained
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effect in humans [113]. Multiple doses of EVs showed greater efficacy than single dosing
but repeated injections decrease feasibility [98,109]. Most studies focused on intravenous
injection but there is a shifting focus to delivering therapeutics to organs via their arterial
blood supply. This maximises the efficacy at the target site while reducing its metabolism
and systemic side effects [107]. The timing of EV injection is also significant whereby a
recent study confirmed administration of BM-MSC-EVs after renal damage is more effective
than delivering them prophylactically [154]. Most studies use in-house manufacturing
and characterisation protocols to isolate EVs [97] and only a handful have published their
adherence to good manufacturing practice criteria [187–189]. Further pharmaceutical
regulation of the manufacture and delivery of EV-based therapeutics is required before
they can be safely translated from the laboratory bench to the bedside [187].

In conclusion, MSC-EV therapy shows increasing potential for alleviating AKI and
slowing the progression of CKD. Future studies should engineer the surface and cargo of
EVs for superior specificity and develop optimal protocols for delivery and safe transition
into clinical practice.
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