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Abstract

Various hepatoxic factors, such as viruses, drugs, lipid deposition, and autoimmune responses, induce acute or chronic liver
injury, and 3.5% of all worldwide deaths result from liver cirrhosis, liver failure, or hepatocellular carcinoma. Liver
transplantation is currently limited by few liver donors, expensive surgical costs, and severe immune rejection. Cell therapy,
including hepatocyte transplantation and stem cell transplantation, has recently become an attractive option to reduce the
overall need for liver transplantation and reduce the wait time for patients. Recent studies showed that mesenchymal stem
cell (MSC) administration was a promising therapeutic approach for promoting liver regeneration and repairing liver injury by
the migration of cells into liver sites, hepatogenic differentiation, immunoregulation, and paracrine mechanisms. MSCs
secrete a large number of molecules into the extracellular space, and soluble proteins, free nucleic acids, lipids, and
extracellular vesicles (EVs) effectively repair tissue injury in response to fluctuations in physiological states or pathological
conditions. Cell-free-based therapies avoid the potential tumorigenicity, rejection of cells, emboli formation, undesired
differentiation, and infection transmission of MSC transplantation. In this review, we focus on the potential mechanisms of
MSC-based cell-free strategies for attenuating liver injury in various liver diseases. Secretome-mediated paracrine effects
participate in the regulation of the hepatic immune microenvironment and promotion of hepatic epithelial repair. We look
forward to completely reversing liver injury through an MSC-based cell-free strategy in regenerative medicine in the near
future.
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Introduction
Various hepatoxic factors, such as viruses, drugs, lipid
deposition, and autoimmune responses, induce acute or
chronic liver injury, [1, 2] and 3.5% of all worldwide
deaths result from liver cirrhosis, liver failure, or

hepatocellular carcinoma [3]. Orthotopic liver trans-
plantation is performed in end-stage liver disease when
the remanent liver tissue is unable to regenerate in suffi-
cient time. However, liver transplantation is currently
limited by few liver donors, expensive surgical costs, and
severe immune rejection. Cell therapy, including hepato-
cyte transplantation and stem cell transplantation, has
recently become an attractive option to reduce the over-
all need for liver transplantation and reduce the wait
time for patients. However, the clinical application of
hepatocyte transplantation is limited by the finite prolif-
erative capacity and missing liver functions of human
primary hepatocytes, even though this strategy is sim-
pler, less invasive, and safer than surgery [4]. Stem cells
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are multipotent cells that are able to proliferate, self-
renew, and differentiate into various somatic cells
in vitro, and they have attracted much attention for re-
storing tissue function in vivo with little immune rejec-
tion. Stem cells can be classified into three categories:
embryonic stem cells (ESCs), induced pluripotent stem
cells (iPSCs), and mesenchymal stem cells (MSCs) [5].
ESCs are stem cells derived from early-stage embryos
and have high potential to undergo multilineage differ-
entiation. Takahashi and Yamanaka transformed mouse
fibroblasts into iPSCs by retroviral transduction of four
transcription factors (TFs), Oct4, Sox2, Klf4c, and c-Myc
[6]. The multipotency and self-renewal ability of these
reprogrammed cells are similar to those of ESCs [7].
MSCs can be isolated from various tissues, such as adi-
pose tissue, bone marrow, the placenta, the amnion,
menstrual blood, and other tissues [8–12]. The Inter-
national Society for Cellular Therapy suggested that
MSCs could undergo differentiation into adipocytes, os-
teocytes, and chondrocytes in vitro [13]. Moreover, these
cells have more potency and organ availability compared
to those of tissue-specific stem cells, no ethical issues
compared to those of ESCs, and less tumorigenicity than
iPSCs. Considering the advantages of MSCs, they are
widely used to repair tissue injury and in regenerative
medicine.
Recent studies indicated that MSC administration was

a promising therapeutic approach for promoting liver re-
generation and repairing liver injury by cell migration
into liver sites, hepatogenic differentiation, immunoregu-
lation, and paracrine mechanisms. Despite their benefi-
cial effects in repairing liver injury, the application of
MSCs is limited by aberrant differentiation into undesir-
able cell types and low engraftment in vivo [14, 15].
Moreover, potential tumorigenicity also inhibits the clin-
ical application of MSCs in current regenerative medi-
cine [16]. MSCs demonstrate potential oncogenic
transformation after long-term culture in vitro, and they
also have the capacity to support tumor growth in vivo
[17, 18]. Hundreds of millions of MSCs are required for
transplantation, and the expansion time is approximately
10 weeks before transplantation [19]. MSC transplant-
ation is a risky clinical application since living cells may
induce occlusion in the microvasculature [20]. More-
over, transplanted MSCs have a short lifespan and accu-
mulate in lung tissue, which significantly reduces the
efficacy of MSC-based regeneration in vivo [21]. How-
ever, few MSCs can survive for over 1 week after intra-
venous administration, which suggests that MSCs
participate in repairing tissue injury via paracrine mech-
anisms [22].
Cell-free-based therapies contribute to liver injury re-

pair via paracrine mechanisms and are safer, cheaper,
and more effective treatment options than MSC

transplantation. MSCs secrete a large number of mole-
cules into the culture medium, and soluble proteins, free
nucleic acids, lipids, and EVs effectively repair tissue in-
jury in response to fluctuations in physiological states or
pathological conditions [23]. Soluble and applicable fac-
tors can be separated from the MSC-derived secretome
and microvesicle fraction via centrifugation, filtration,
polymer precipitation-based methodologies, ion ex-
change chromatography, and size-exclusion chromatog-
raphy [24]. The manipulation of the MSC-derived
secretome is similar to that of pharmaceutical agents,
and the storage of the MSC-derived secretome for a long
period of time can be performed without toxic cryopre-
servative agents [21, 25]. Furthermore, the in vitro cell-
free MSC-sourced secretome is economical and practical
for clinical applications [26]. Cell-free-based therapies
avoid the potential tumorigenicity, rejection of cells, em-
boli formation, undesired differentiation, and infection
transmission of MSC transplantation. Although multiple
studies have shown significant effects of MSC-derived
secretomes in treating liver diseases, the exact key mole-
cules in the MSC secretome need to be further investi-
gated. In this review, we focus on the potential
mechanisms by which MSC-based cell-free strategies at-
tenuate liver injury in various liver diseases. Secretome-
mediated paracrine effects participate in the regulation
of the hepatic immune microenvironment and the pro-
motion of hepatic epithelial repair.

Current forms of liver injury
The liver consists of multiple functional or interstitial
cells, including hepatocytes, cholangiocytes, Kupffer
cells, sinusoidal endothelial cells, hepatic stellate cells
(HSCs), and dendritic cells, and this organ performs syn-
thesis and secretion functions associated with digestion
[27]. However, external injury always initiates a pool of
various hepatoxic factors or cytokines in injured sites,
which exacerbates internal injury in liver tissue. It is
worth noting that the liver may initiate the recovery
process and liver regeneration can occur after timely res-
toration of blood flow or oxygen in vivo via replenish-
ment of cellular adenosine triphosphate (ATP) and
controlling excessive reactive oxygen species (ROS);
however, ischemia-reperfusion (I/R) injury and the sub-
sequent reintroduction of oxygen-rich blood into liver
tissue will promote liver cell apoptosis and exacerbate
the progression of liver dysfunction [28]. If long-term is-
chemia occurs, cell death and cell damage are initiated
after the activation of apoptotic or necrotic pathways,
and the late stage of liver injury results in the generation
of fibrotic tissue and reduced liver function [28]. In
addition to hepatic I/R, other chronic liver injury factors,
such as viral infection, drugs, high-fat diet consumption,
genetic mutations, and biliary tract diseases [29], also

Hu et al. Stem Cell Research & Therapy          (2020) 11:377 Page 2 of 12



largely impair the functions of epithelial cells and acti-
vate fibrogenesis and inflammation by activating extracel-
lular matrix (ECM)-producing cells in the liver tissue.
These changes further lead to collagen deposition and the
generation of irreversible intrahepatic scar tissue in the
liver [30]. At the end stage of liver cirrhosis, patients have
multiple complications, such as portal hypertension,
acute-on-chronic liver failure, or hepatocarcinoma. It is
generally accepted that acute liver failure (ALF) occurs in
patients without a history of liver disease who develop an
international normalized ratio (INR) > 1.5 and any grade
of hepatic encephalopathy (HE) within 26 weeks of the on-
set of illness [31]. On the other hand, acute-on-chronic
liver failure (ACLF) is defined as a patient with chronic
liver disease who develops liver failure [32]. The balance
of hepatocyte cell death and regeneration is disrupted in
patients with liver failure, and a majority of hepatocytes
undergo apoptosis and necrosis, which are mediated by a
multitude of interrelated factors and signals, including
caspases, oxidative stress and antioxidants, transcription
factors, cytokines, chemokines, and kinases [33].

Cell death and liver injury
In contrast to most other organs, liver regeneration is also
initiated to repair liver injury and compensate for liver
function, which is observed in 2/3 partial hepatectomy
animal models [34]. On the other hand, hepatocyte injury
also results in ATP depletion, which is followed by mito-
chondrial depolarization, lysosomal breakdown, cell swell-
ing, bleb formation, and cell membrane rupture [35].
Several forms of cell death, including apoptosis,

necroptosis, necrosis, and autophagy, are noted in in-
jured liver tissue [36]. However, apoptosis and necrosis
are two major forms of cell death in liver diseases. Au-
tophagy is a protective process that delivers cytoplasmic
material for degradation in liver tissue to maintain hep-
atic homeostasis, and hepatic autophagy also includes
specific and selective types, including mitophagy and
lipophagy [37, 38]. Apoptosis is a kind of programmed
cell death that participates in removing damaged cells to
protect against external disturbances and maintain liver
homeostasis. Hepatocyte necrosis is usually observed in
different liver diseases, such as I/R injury or drug-
induced liver injury [39]. Cellular morphology undergoes
changes, including chromatin condensation, DNA frag-
mentation, cell shrinkage, and membrane budding, in an
ATP-dependent manner after the initiation of hepato-
cyte apoptosis [40]. Characteristic chromatin condensa-
tion and fragmentation result in the packaging of
organelles and pyknosis in the cytoplasm, which pro-
gresses to apoptosis [41]. In chronic liver disease, the
apoptosis rate is higher than the necrosis rate, although
both forms of cell death are basic pathogenic mecha-
nisms of liver injury [42]. Mild liver injury factors first

promote the translocation of phosphatidylserine from
the cytoplasm into the extracellular membrane, subse-
quently triggering the activation of caspase proteins, the
release of mitochondrial factors such as cytochrome c
and apoptosis-inducing factor, and DNA fragmentation
[40]. Necrosis is characterized by membrane blebbing,
cytoplasmic swelling, mitochondrial swelling, mitochon-
drial calcification, disintegration of organelles, and cell
lysis [43]. However, severe liver injury factors promote
imbalanced ion homeostasis, DNA digestion, postlytic
DNA fragmentation, and cellular necrosis in an energy-
independent manner [44]. Necrosis is another kind of
cell death that is characterized by uncontrolled damage
accompanied by cell membrane damage, cell swelling,
and cellular inflammation [45]. Necrosis robustly re-
cruits inflammatory cells into the liver parenchyma and
exacerbates the release of inflammatory factors to facili-
tate liver disease [46].
In conclusion, various liver injury factors such as vi-

ruses, drugs, lipid deposition, and autoimmune responses
result in different forms of cell death, such as apoptosis or
necrosis, depending on the severity of the insult. Different
liver injury factors ultimately lead to liver failure when a
large number of liver parenchymal cells die and the cell
death rate outpaces the liver regenerative capabilities.
Moreover, cell death in liver tissue activates the liver in-
flammatory response and subsequent multiorgan ramifica-
tions and carries a grave prognosis.

The secretion and composition of MSC-derived
soluble factors
In vitro cultured MSCs secreted a certain number of sol-
uble factors into Dulbecco’s modified Eagle’s medium
(DMEM) to generate MSC-derived conditioned medium
(MSC-CM). There are many soluble bioactive factors, in-
cluding cytokines, chemokines, immunomodulatory mol-
ecules, and growth factors, in MSC-CM that exert
immunomodulatory functions, inhibit cell death and fi-
brosis, stimulate vascularization, promote tissue remod-
eling, and recruit other cells in various tissues. MSC-CM
is able to transdifferentiate tissue-specific progenitor
cells into somatic cells and participate in tissue injury re-
pair via its paracrine effects [47]. MSC-secreted EVs can
encapsulate various paracrine factors, and they can be
classified into three categories, exosomes (30–100 nm),
microvesicles (100–1000 nm), and apoptotic bodies
(500–2000 nm), according to their origin and size [23].
Exosomes are nanosized EVs that originate from the in-
ward budding of the membrane of multivesicular bodies
(MVBs) and have remarkable physiological properties.
Exosomes are released after the fusion of MVBs with the
plasma membrane, and these biological factors are fur-
ther taken up into target cells [48]. Exosomes can be
sedimented by centrifugation at 100,000g, and their
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concentration varies from 1.13 to 1.19 g ml/L in sucrose
solutions [49]. The nanometer-sized features made exo-
somes easy to transfer through blood and other bio-
logical fluids. The proteins and miRNAs contained in
exosomes are functionally complex and participate in
immune regulation, bioenergetics, energy metabolism,
antioxidative stress, and tissue regeneration in transplant
recipients [50]. Lai et al. demonstrated that the catalytic
capacity of exosome-derived enzymes changed according
to the surrounding microenvironment. That group con-
cluded that this specificity made exosomes safer than
other therapeutic agents [51]. Exosomes protect against
the degradation of active ingredients by encapsulating
factors within their membranes and facilitating intracel-
lular uptake via endocytosis [52]. In addition, MSC-
derived soluble factors deliver multiple factors, such as
DNA, mRNA, microRNA, proteins, lipids, and organ-
elles, to recipient tissues and target cells via early endo-
cytosis and subsequent fusion [53, 54]. In particular, a
gene ontology analysis showed that various miRNAs,
such as miR148a, miR532-5p, miR378, and let-7f, are
enriched in the culture medium of MSCs, and these
miRNAs can be isolated to regulate different pathways,
including cellular transport, angiogenesis, proteolysis,
and apoptosis [55–59]. Unique proteins were suggested
to exist only in MSC-derived exosomes compared to
their parental MSCs [60]. It is worth noting that culture
conditions such as hypoxia, ischemia, and inflammation
effectively influence the composition of MSC-derived
soluble factors [61–63]. On the other hand, soluble fac-
tors isolated from MSCs from different sources also have
different transcriptome and proteome profiles [64].
MSC-derived soluble factors are preferentially taken up
by injured tissues and further mediate cell communica-
tion in both adjacent and remote areas via paracrine and
endocrine signaling.

Quality control of EVs
In good manufacturing practice (GMP), there are three
important issues for exosome generation: cell culture,
purification, and quality control. The main challenge in
the GMP of exosomes is quality control since the
sources of MSC-producing exosomes are diverse [65].
For further clinical applications and academic studies,
appropriate quality control is important when manufac-
turing clinical-grade EVs with a GMP-compliant process
and developing cell-free therapeutics. Determining the
quantity, identity, purity, and potency assays of EVs are
known as routine quality control criteria.
Total amounts of proteins, lipids, or RNAs can be de-

termined when quantifying EVs; however, nanoparticle
tracking analysis (NTA), resistive pulse sensing (RPS),
and dynamic light scattering (DLS) are used to deter-
mine the number and size of EVs. The most widely used

NTA determines the number and size of particles by
tracking the Brownian motion of single particles in an
aqueous solution [66]. Quantification of EVs remains ex-
tremely challenging, and new methods, such as nanoflow
cytometry, direct stochastic optical reconstruction mi-
croscopy, ExoCounter with optical disc technology, and
imaging flow cytometry, have been developed to effect-
ively quantify EVs [67–70]. The purification process can
be described as three steps: filtration to remove the cel-
lular debris, concentration of the CM, and exosome iso-
lation from the concentrated CM [71]. To achieve
higher specificity, investigators should remove impurities
step-by-step. Several proteins, including CD9, CD63,
CD81, tumor susceptibility gene (TSG)101, and Alix,
which are highly enriched in exosomes, are recom-
mended as specific markers for determining the identity
of EVs [72–75]. To determine the purity for quality con-
trol, the particle-to-protein, protein-to-lipid, or RNA-to-
particle ratios are common markers for monitoring the
purity of EVs [72]. There are also some impurities, such
as antibiotics and serum, that should be excluded from
the cell culture medium when monitoring the removal
of potential hazardous factors [76]. On the other hand,
another criterion is the absence of several proteins, in-
cluding histones, lamin A/C, glucose-regulated protein
94, Golgi matrix protein 130, and cytochrome C, since
strict cellular localization prohibits the enrichment of
these intracellular proteins [72]. Although various bio-
logical and biochemical assays are used to determine the
potency of EVs or exosomes, it is still difficult to estab-
lish a single, standard potency assay since the cargos of
EVs in vivo are so complex [77, 78].

MSC-derived soluble factors are effective for
treating liver diseases
Transplantation of MSC-CM and exosomes is the main
therapy for treating acute or chronic liver injury
(Table 1). Transplantation significantly improved liver
function by inhibiting apoptosis, necrosis, oxidative
stress, inflammation, infiltration of immune cells, im-
mune rejection, HSC activation, etc. (Fig. 1).

MSC-CM for treating liver diseases
Infusion of MSC-CM immediately before liver irradi-
ation obviously inhibited the apoptosis of sinusoidal
endothelial cells (SECs) and the histopathological
changes in the irradiated liver by attenuating liver in-
flammation [79]. MSC-CM attenuated liver injury and
provided a survival benefit in rats with 5% reduced-size
liver transplantation (RSLT) by reducing the apoptosis
rate of hepatocytes and SECs and reducing the secretion
of proinflammatory cytokines, infiltration of neutrophils,
and activation of Kupffer cells. Furthermore, the expres-
sion of vascular endothelial growth factor (VEGF) and
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matrix metallopeptidase 9 was also improved to promote
liver regeneration in the liver grafts of recipient rats [80].
MSC-derived CM partially ameliorates ALF while signifi-
cantly suppressing fibrogenesis, necroinflammation, liver
apoptosis, and activation of HSCs and improving glycogen
synthesis and storage and liver regeneration. Furthermore,
MSC-CM reduced infiltrating macrophages, converted
CD4+ T lymphocytes into anti-inflammatory Tregs and
Th2 cells, and facilitated HSC death in liver tissue [81].
Both MSC-CM and interleukin (IL)-1Ra isolated from
MSC-CM significantly reduced liver fibrosis by attenuat-
ing liver inflammation and inducing alpha-1 type I colla-
gen, transforming growth factor (TGF)-β1, and tissue
inhibitor of metalloproteases 1 [82].

MSC-derived exosomes for treating liver diseases
MSC-derived soluble factors isolated from MSC-CM can
also protect against liver inflammation and liver injury.
Tamura et al. demonstrated that exosomes escape being
trapped in lung tissue and are largely distributed in in-
jured liver tissue. MSC-derived exosomes comparably

improved liver functions and hepatocyte proliferation
but decreased the apoptosis rate and scope of liver nec-
rotic areas by exerting anti-inflammatory effects and ac-
tivating Tregs in comparison to those of the MSC group
[83]. These exosomes were proven to exert protective ef-
fects on liver injury models in a dose-dependent manner.
Du et al. demonstrated that MSC-derived exosomes sig-
nificantly upregulated hepatocyte proliferation in a dose-
dependent manner and could directly fuse with target
hepatocytes. Consequently, MSC-derived exosomes de-
creased the histopathological scores and serum levels of
aminotransferases by inhibiting hepatocyte necrosis and
sinusoidal congestion and upregulating hepatocyte pro-
liferation in the ischemia/reperfusion injury model [84].
Exosomes from human umbilical cord-derived MSCs
significantly decreased the serum levels of alanine ami-
notransferase (ALT) and aspartate aminotransferase
(AST) and repaired injured liver tissue in an ALF mouse
model after reducing TXNIP/NLRP3 inflammasome ac-
tivation and its downstream inflammatory factors, in-
cluding caspase-1, IL-1β, and IL-6 [85]. MSC-derived

Fig. 1 MSCs isolated from various tissues such as adipose tissue, bone marrow, endometrium, umbilical cord, and other tissues are able to secret
a large number of soluble factors. These soluble factors have various biological functions including immunoregulation, inhibition of HSC
activation, anti-inflammation, and anti-oxidative stress. Moreover, they further decrease the cell death rate and improve liver regeneration for
preventing liver injury and maintaining liver homeostasis
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exosomes dose-dependently inhibited apoptosis in D-
galactoside (D-GalN)/lipopolysaccharide (LPS)-treated
AML12 cells in vitro. In addition, transplantation of exo-
somes significantly inhibited hepatocyte apoptosis and
increased the survival rates of D-GalN/LPS-induced ALF
mice by migrating to liver tissue, inhibiting liver mono-
nuclear cells and downregulating the apoptotic protein
caspase-3 [86]. Jiang et al. showed that MSC-derived
exosomes alleviated carbon tetrachloride (CCl4)-induced
acute liver injury and liver fibrosis via the inhibition of
oxidative stress and hepatocyte apoptosis and further
improved the antioxidant and hepatoprotective effects of
bifendate treatment [87]. In addition, exosomes more
significantly alleviated CCl4-induced liver fibrosis than
MSCs, as demonstrated by a reduction in collagen accu-
mulation and enhanced liver functions through a reduc-
tion in liver inflammation, upregulation of hepatocyte
regeneration, and inhibition of HSC activation through
the Wnt/β-catenin pathway [88]. Exosomes from human
umbilical cord MSCs significantly protected against liver
dysfunction, as shown by decreased ALT levels and
TGF-β1 and phosphorylated Smad2 expression. Exo-
somes also decreased collagen deposition and amelio-
rated CCl4-induced liver fibrosis by inhibiting epithelial-
to-mesenchymal transition (EMT), attenuating hepatic
inflammation, and eliminating hepatocyte apoptosis [89].

Exosomes from gene-modified MSCs for treating liver
diseases
Intriguingly, gene modification of MSCs provides add-
itional therapeutic effects of exosomes in liver diseases.
Liu et al. showed that exosomes from adipose-derived
MSCs also improved liver functions through a similar
pathway. However, knockout of miR-17 in MSCs abol-
ished the therapeutic effects of exosomes from miR-17-
knockout MSCs in ALF mice, which indicated that miR-
17 plays a critical role in the anti-inflammatory function
of exosomes [90]. A dose-dependent effect was also ob-
served after gavage administration of MSC-derived exo-
somes. Although 8mg/kg MSC-derived exosomes failed
to rescue ALF animals, 16 and 32mg/kg MSC-derived
exosomes improved the survival rate to 60 and 90%, re-
spectively. In addition, Yan et al. demonstrated that exo-
somes effectively rescued ALF mice by reducing oxidative
stress and apoptosis in liver tissue, and knockdown of
glutathione peroxidase 1 (GPX1) in MSCs abrogated the
protective effects of exosomes and inhibited the recovery
of hepatic oxidative injury in ALF mice [91].

How can the therapeutic effects of MSC-based
cell-free strategies be improved?
To further improve the therapeutic effects, modification
of the MSC microenvironments and gene modification of
MSCs can consequently alter the composition of proteins

and vesicular contents of MSC-derived soluble factors
(Table 2).

Pretreatment or cotreatment for MSC-based cell-free
therapy
The common oxygen level is approximately 21% O2 for
standard cell culture, and this oxygen concentration is
not the same as that in the in vivo microenvironment.
The physiological oxygen concentration in tissues varies
from 1% in cartilage and bone marrow to 12% in periph-
eral blood [92]. To improve MSC multipotency, prolifer-
ation, and secretion of cytoprotective molecules, hypoxic
conditions have been proven to significantly improve the
survival rate of MSCs in the harsh environments of in-
jury sites after transplantation [93, 94]. CM derived from
hypoxic (10% O2) MSCs more significantly improved the
biochemical parameters and histological results in
acetaminophen-induced ALF models by reducing liver
inflammation and improving liver regeneration than
MSC-CM isolated from a normal oxygen culture envir-
onment [95]. CM from MSCs cultured at lower (5%) O2

levels more significantly inhibited the activation of in-
flammation and attenuated hepatocyte necrosis in liver
tissue than CM from normoxic MSCs, and hypoxic
MSC-derived CM more robustly downregulated oxygen
tension and accelerated the healing process in damaged
liver tissue of ALF models than CM from normoxic
MSCs. Furthermore, CM derived from MSCs cultured in
1% hypoxia showed higher levels of IL-6, tumor necrosis
factor (TNF)-α, hepatocyte growth factor (HGF), and
VEGF, and these extremely hypoxic CMs significantly
increased the number of proliferating cells in liver tissue
via the activation of JAK/STAT3 signaling [96]. Proteins
isolated from mildly hypoxic MSCs (5% and 10% O2)
showed better effects in treating acetaminophen-induced
ALF than those from normal MSCs by inhibiting inflam-
matory reactions and reducing hepatocyte necrosis in
damaged liver. This group further showed that even
moderate hypoxia produced discrete changes in the ex-
pression of various subsets of proteins responsible for
intracellular respiration and cell signaling [97].
To further improve the therapeutic effects of MSC-

CM, MSCs were cocultured with hepatocytes in vitro to
improve MSC secretion of protective factors. In com-
parison to MSC-CM and CM from hepatocytes, the
cocultured MSC-CM significantly prolonged the survival
time of ALF rats by preventing liver injury and promot-
ing liver tissue repair [98]. Cotreatment with melatonin
and MSC-derived exosomes markedly decreased the
liver injury score and AST level in the liver I/R group.
Intriguingly, the cotreatment group showed comparably
low levels of inflammatory factors, apoptosis-related pro-
teins, oxidative stress, DNA damage, and mitochondrial
damage to those of the normal group [99].
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Culture conditions may influence the regenerative and
immunomodulatory capacities of MSC-derived soluble
factors, and the optimization of culture conditions will
contribute to the further regeneration of liver tissues.
According to current studies, pretreatment or cotreat-
ment of MSCs with different factors exerts decisive ef-
fects on the therapeutic effects of MSC-based cell-free
treatment in recipients. However, the study number is
limited, and we suggest exploring the detailed treatments
of MSCs and their related mechanisms in depth.

Soluble factors from MSCs with gene modifications
Valadi et al. first reported that exosomes effectively
transferred functional mRNAs or miRNAs into target
cells since they found that there were multiple new
mouse-derived proteins in human mast cells after the
transplantation of mouse MSC-derived exosomes [100].
Current studies have tried to alter the delivered factors
to improve the therapeutic effects of MSC-derived sol-
uble factors.
MSCs were infected with pre-miR-223 and transfected

with a miR-223 inhibitor to generate exosomes containing
miR-223 and exosomes without miR-223, respectively.
Exosomes and exosomesmiR-223(+) significantly reversed
autoimmune hepatitis by downregulating cytokines such

as NLRP3 and caspase-1, while exosomesmiR-223(−) did not
exert protective effects in the experimental model of auto-
immune hepatitis. This finding indicated that miR-223
was a key factor participating in the immunoregulation of
MSC-derived exosomes to protect against liver injury
[101]. In addition, exosomesmiR181-5p(+) delivered miR181-
5p to injured liver tissue and inhibited the deposition of
collagen I, vimentin, α-SMA, and fibronectin in fibrotic
livers after activating autophagy and downregulating
STAT3 and Bcl-2 in HSCs [102].

Conclusions
MSC-based cell-free products protect against the poten-
tial risks associated with the use of native or engineered
MSCs in vivo; moreover, an increasing number of stud-
ies have shown that the therapeutic effects of MSC-
based cell-free products are equal to those of MSCs. In
comparison to MSCs, MSC-derived soluble factors are
easier to generate in advance, more stable for storage
and transport, and more convenient to control in terms
of quality and quantity. As transplantation of MSC-
derived soluble factors avoids delivering active cells, in-
fusion of these factors is less immunogenic, less tumori-
genic, and less likely to result in exogenic infections,
including cytomegalovirus and herpes simplex virus

Table 2 Improvement in the efficacy of MSC-derived soluble factors in treating liver diseases via different mechanisms

Animal
of
origin

Tissue of
origin

Pretreatment Type of MSC
derivatives

Quantity Route Liver injury Model Effect Mechanism Ref.

Mouse Bone
marrow

Hypoxia MSC-CM 5mg Intraperitoneal Acetaminophen Mouse Improve
biochemical
parameters and
histological scores

Reduce
inflammation;
improve liver
regeneration

[95]

Human Adipose Hypoxia 25-fold
concentrated
MSC-CM

0.1 ml Tail vein Partial
hepatectomy

Mouse Increase the
number of
proliferative liver
cells

Activate JAK/
STAT3 signaling

[96]

Mouse Bone
marrow

Hypoxia Protein
composition

10 mg/ml Intraperitoneal Acetaminophen Mouse Reduce oxygen
levels; accelerate
healing in
damaged liver
tissue

Inhibit the
activation of
inflammation;
attenuate
hepatocyte
necrosis

[97]

Rat Bone
marrow

Coculture with
hepatocytes

25-fold
concentrated
MSC-CM

7.2 ml Tail vein D-GalN Rat Prolong the
survival time of
ALF rats

Prevent liver
injury; promote
liver tissue
repair

[98]

Mouse Bone
marrow

miR-223
overexpression

Exosomes N/A Intraperitoneal Liver antigens
S100

Mouse Reverse
autoimmune
hepatitis

Downregulate
the release of
cytokines such
as NLRP3 and
caspase-1

[101]

Mouse Adipose
tissue

miR181-5p
overexpression

Exosomes 40 μg Intrasplenic CCl4 Mouse Inhibit the
deposition of
collagen I,
vimentin, α-SMA
and fibronectin in
the liver

Activate
autophagy;
downregulate
Stat3 and Bcl-2
in HSCs

[102]

Hu et al. Stem Cell Research & Therapy          (2020) 11:377 Page 8 of 12



infections [103]. All these advantages make MSC-
derived soluble factors promising alternatives to MSC
therapy in treating liver diseases. However, current stud-
ies have not clarified the detailed factors in MSC-derived
soluble factors in vitro and in vivo. The presence of dif-
ferent bioactive molecules mediates the different bio-
logical activities of MSC-derived exosomes, which may
also influence their final effects in vivo. Furthermore,
questions about the characterization, potency, and quan-
tification of MSC-derived exosomes must be addressed
before their clinical application is feasible. As MSC-
derived soluble factors effectively deliver various cargos
in vivo, the identification and purification of these fac-
tors should be explored to avoid the administration of
potentially harmful vesicles or molecules in the human
body. In our opinion, pretreatments or gene modifica-
tions may also serve as effective strategies to improve
the therapeutic effects of MSC-based cell-free products.
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