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Liver fibrosis is a fibrogenic and inflammatory process that results from hepatocyte

injury and is characterized by hepatic architectural distortion and resultant loss of

liver function. There is no effective treatment for advanced fibrosis other than liver

transplantation, but it is limited by expensive costs, immune rejection, and

postoperative complications. With the development of regenerative medicine in

recent years, mesenchymal stem cell (MSCs) transplantation has become themost

promising treatment for liver fibrosis. The underlying mechanisms of MSC anti-

fibrotic effects include hepatocyte differentiation, paracrine, and

immunomodulation, with immunomodulation playing a central role. This review

discusses the immune cells involved in liver fibrosis, the immunomodulatory

properties of MSCs, and the immunomodulation mechanisms of MSC-based

strategies to attenuate liver fibrosis. Meanwhile, we discuss the current

challenges and future directions as well.
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1 Introduction

Liver fibrosis is a complex fibrogenic and inflammatory process that results from chronic

liver injury. The primary pathophysiology of liver fibrosis is increased collagen deposition of

types I and III in the extracellular matrix (ECM) (1, 2). Major etiological agents of liver

fibrosis include alcohol, viruses, metabolic, and congenital disorders, all of which can lead to

hepatocyte injury and hepatic stellate cell (HSC) activation, resulting in excessive ECM

deposition and structural disorders in the liver (3, 4). Despite distinct pathogenesis, their

common outcome is the development of liver cirrhosis. In recent years, the incidence and

mortality of hepatic fibrosis have increased steadily and become a substantial global health

burden. Other than liver transplantation, there is no curative treatment for end-stage
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cirrhosis. However, expensive costs, immune rejection, and

postoperative complications limit liver transplantation (5, 6).

Stem cell transplantation has emerged as the most promising

treatment for liver fibrosis since the advent of regenerative medicine

(7–9). Stem cells are a population of cells with self-renewal,

proliferation, and pluripotent differentiation potential that can

differentiate into multiple cell types under defined conditions (10,

11). Embryonic stem cells (ESCs) (12, 13), induced pluripotent stem

cells (iPSCs) (14–17), and mesenchymal stem cells (MSCs) (18–22)

have been investigated the most in the treatment of liver fibrosis.

ESCs, the prototype of pluripotent stem cells, have nearly unlimited

self-renewal capacity and differentiation potential (23). iPSCs

display similar surface antigens expression, proliferation capacity,

morphology, and gene expression characteristics as embryonic stem

cells (24). ESCs and iPSCs achieve therapeutic effects mainly by

differentiating into mature hepatocytes in vitro or in vivo (8). MSCs,

on the other hand, not only have the potential for self-renewal and

differentiation (25) and can regulate the immune response (7).

Moreover, since abnormal immune responses are the primary cause

of liver fibrosis, MSCs are the most promising stem cells for treating

liver fibrosis, as they can slow or even reverse the progression of

liver fibrosis (26–28).

This review focuses on the immune cells involved in liver

fibrosis, the immunomodulatory properties of MSCs, and the

immunomodulation mechanisms of MSC-based strategies to

attenuate liver fibrosis. The challenges and future directions

were also discussed.
2 Immune cells participate in the
process of liver fibrosis

According to common knowledge, the liver is composed of

primary hepatocytes, cholangiocytes, Kupffer cells (KCs), liver

sinusoidal endothelial cells (LSECs), HSCs, fibroblasts,

lymphocytes, oval cells, lymphocytes, and other immune cells

(29). The liver’s blood supply originates from the hepatic artery

and portal vein and passes through infections or toxins of systemic

and intestinal origin. Hence, the liver is highly susceptible to

pathogens that cause acute or chronic liver injury (30). Injury to

intrahepatic parenchymal cells, such as hepatocytes or

cholangiocytes, causes liver fibrosis. Varied etiologies could

contribute to liver damage, including inflammation, chronic

viral hepatitis, alcohol consumption, chronic cholestasis, and

non-alcoholic steatohepatitis (NASH). Although the etiologies

are different, the initial phase often includes hepatocyte injury,

which subsequently causes the release of oxygen radicals and

inflammatory molecules. These pro-inflammatory mediators

stimulate KCs and hepatic sinusoidal endothelial cells, leading

to the transdifferentiation of HSCs from a quiescent to an

activated phenotype (1–3). In addition, other liver-specific

immune cells, including natural killer (NK) cells, natural killer T

cells (NKT) cells, dendritic cells (DCs), and neutrophils, react to
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injured hepatocytes by producing cytokines and initiating

inflammatory responses. These inflammatory cytokines (such as

transforming growth factor-b (TGF-b) and platelet-derived

growth factor (PDGF)) could stimulate and transdifferentiate

HSCs into myofibroblasts (3, 4). HSCs are the most critical

non-parenchymal cells of the liver, located in the Disse space,

and play a crucial role in developing liver fibrosis. Fibroblasts in

the bone marrow or circulating blood, as well as hepatocytes and

cholangiocytes, can also be transdifferentiated into myofibroblasts

by epithelial-mesenchymal transition (EMT). However, those

derived from activated HSCs are the most common (4).

Activation of HSCs results in the generation of a massive ECM

and the expression of a-smooth muscle actin (a-SMA). TGF-b is

the primary cytokine involved in the activation of HSC

transdifferentiation and the EMT signal. TGF-b1 activation

increases ECM synthesis and inhibits ECM degradation, thereby

accelerating the liver fibrosis development. In addition,

myofibroblasts are known to produce tissue inhibitors of matrix

metalloproteinases (TIMPs) to prevent matrix metalloproteinases

(MMPs) from degrading the ECM and maintaining ECM integrity

(Figure 1) (31, 32).

3 The immunomodulatory
properties of mesenchymal stem
cells

MSCs were initially utilized primarily for tissue repair and

regeneration. Subsequently, they have been increasingly used to

treat graft-versus-host disease (GVHD) (33) and autoimmune

diseases like lupus (34) and Crohn’s disease (35). Furthermore,

the clinical potential of MSCs has been extended to treat

myocardial infarction (36), stroke (37, 38), multiple sclerosis

(39), liver cirrhosis (18, 40), diabetes (41), lung injuries (42, 43),

and cancer (44). MSCs have been isolated and expanded from

numerous adult and perinatal tissues, including bone marrow,

adipose tissue, peripheral blood, fetal tissues, dental pulp,

umbilical cord, and placental tissues (45).

Currently, it is believed that MSC must possess at least the

following three characteristics (46): first, the cells must be able to

grow on plates; second, CD90, CD73, and CD105 must be

expressed, while HLA class II, CD19 or CD79a and CD14,

CD34, CD45 or CD11b are negative; and third, the cells must

be able to differentiate into osteoblasts, chondrocytes,

and adipocytes.

MSCs are multipotent cells emerging as the most promising

method of allogeneic cell treatment (45). MSCs have natural

immunomodulatory properties, trophic capacities, and strong in

vitro self-renewal capacity, and their immune-modulatory

actions can be easily manipulated (44). MSCs influence most

immune cell functions through direct contact and factors in the

local microenvironment. Previous research has revealed that

cytokines released by MSCs are primarily responsible for the
frontiersin.org

https://doi.org/10.3389/fimmu.2022.1096402
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Liu et al. 10.3389/fimmu.2022.1096402
immunomodulatory actions of MSCs (28). However, recent

research has shown that apoptotic and metabolically inactive

MSCs still possess the immunomodulatory capability, with

regulatory T cells and monocytes playing a vital role (47).

MSCs regulate both innate and adaptive immunity (47), and

their immunomodulatory functions are predominantly exerted

through cell-to-cell contact and paracrine activity with

macrophages, monocytes, neutrophils, T cells, B cells and natural

killer (NK) cells. By secreting prostaglandin E2, MSCs convert pro-

inflammatory M1 into anti-inflammatory M2 macrophages

(PGE2) (48). MSCs can also modulate immune responses by

activating the Notch 1 signaling pathway, releasing HLA-G5,

PGE2, and TGF-1, and boosting the activation and proliferation

of CD4+CD25+FoxP3+ regulatory T cells (Tregs) (49). MSCs

decrease the proliferative potential of CD8+ T lymphocytes by

producing indoleamine 2,3-dioxygenase (IDO) and heme

oxygenase-1 (HO-1) and increase the rate of CD4+ T

lymphocytes changing from type 1 T helper (TH1) to TH2

phenotype (50). In addition, hepatocyte growth factor (HGF) and

IL-6 produced by MSCs, for instance, prevent the differentiation of

monocytes into dendritic cells and reduce their propensity to cause

inflammation, reduce the secretion of pro-inflammatory cytokines

IL-12 and IFN-g, and increase the production of anti-inflammatory

cytokine IL-10, thereby inhibiting T-cell activation (51). MSCs

reduce the generation of the pro-inflammatory cytokine TNF by

inhibiting the activity of blast cells.

Successful immunomodulation and tissue regeneration

depend on the interplay between MSCs and macrophages,

especially juxtacrine mechanisms and cell–cell contact (52).

Inflammatory factors released by M1 macrophages or activated

T cells stimulate MSCs to secrete cytokines to differentiate

monocytes toward the M2 type of the anti-inflammatory

phenotype (53). It is known that MSCs may release anti-

inflammatory or pro-inflammatory cytokines (such as IL1b,
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IL-6, IL-8, and IL-9) to mediate their immunomodulatory

effects (54). As stated above, MSCs either inhibit or promote

inflammation based on their exposure to pathological

circumstances. The ultimate immunomodulatory effect may

depend on the ratio of anti-inflammatory to pro-inflammatory

factors in their surrounding environment (55).

4 Mesenchymal stem cell therapies
for liver cirrhosis: Immune
regulation plays a central role

4.1 Potential mechanisms of MSC-based
treatment of liver fibrosis

Many studies have investigated the mechanisms of MSCs in

the treatment of liver fibrosis from diverse perspectives, and they

have been classified into three types (13, 22, 56). (1) MSCs can

transdifferentiate into hepatocytes or merge with existing

hepatocytes when introduced into injured liver tissue, making

them a valuable resource for liver tissue regeneration and repair;

(2) MSCs are capable of producing various cytokines, growth

factors, and exosomes, which stimulate the regeneration of

damaged liver tissue; (3) MSCs possess inhibitory effects on

several other cell types, including NKs, B and T lymphocytes,

allowing them to exercise immunomodulatory effects on

liver diseases.

By migrating to damaged tissues, transplanted MSCs

contribute to the regeneration of the damaged liver via

hepatocyte differentiation mechanisms. Adding specific growth

factors to in vitro culture can promote the differentiation of

MSCs into hepatocyte-like cells with liver-specific morphology

and functions, such as uptake of low-density lipoprotein and

indocyanine green, secretion of albumin and urea, glycogen
FIGURE 1

Diagram illustrating the pathological mechanisms underlying liver fibrosis. Hepatic fibrosis is induced by the imbalance between ECM
production and degradation, driven by HSCs activated by hepatocyte injury. ECM, extracellular matrix; HSC, hepatic stellate cell; TGF-b,
transforming growth factor-b.
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storage, and cytochrome P450 activity (25, 57). For instance,

intrasplenic-grafted MSCs transplanted into liver tissue treated

with carbon tetrachloride (CCl4) undergo hepatogenic

differentiation into HLCs with typical hepatocyte morphology

and form a three-dimensional structure (58). Transplantation of

hepatocyte-differentiated MSCs further inhibited hepatocyte

necrosis and stimulated liver regeneration, thereby enhancing the

survival rate of the ALF model after transplantation into damaged

liver tissue.

However, several studies have demonstrated that transplanted

MSCs rarely undergo hepatic differentiation and vanish from the

liver within one month (59). These studies indicate that MSCs

stimulate liver regeneration via immune regulation and paracrine

mechanisms (25, 56, 60). By regulating innate and adaptive

immune cells, including T lymphocytes, regulatory T cells,

helper T cells, B lymphocytes, and regulatory B cells, MSCs

create a tolerant environment for maintaining immune

homeostasis in vivo (61–64). As previously mentioned, the

development of liver fibrosis is a wound-healing process

involving key events, including hepatocyte injury, immune cell

infiltration, HSCs activation, and excessive ECM deposition.

Therefore, the immunomodulatory function of MSCs can be

exploited to ameliorate liver fibrosis, and it has been an area of

intense study interest (Figure 2).
4.2 MSC can inhibit immune cell
infiltration

Infiltration of immune cells is a necessary stage in liver injury.

MSCs create an immunological-tolerant milieu in liver tissue by

reducing the infiltration of pro-inflammatory immune cells and

promoting the recruitment of anti-inflammatory immune cells,

preventing acute or chronic liver damage. Producing soluble

factors, including TGF-b, PGE2, IDO, NO, and HGF, MSCs

were able to inhibit the activation of T cells. MSCs can induce

the transdifferentiation of CD4+ T cells into CD25+Foxp3+

regulatory T cells (Tregs) through the release of TGF-b (7, 49).

Studies have demonstrated that MSCs dramatically decreased the

number of CD4+ T cells invading the liver, the proportion of

activated CD4+ T lymphocytes, and the total concentration of Th1

cells, and subsequently induced regulatory DCs and Tregs in the

liver to ameliorate liver damage (65). MSCs significantly alleviated

CCl4-mediated liver fibrosis by decreasing the proportion of Th17

cells and increasing the levels of CD4+IL-10+ T cells and

immunosuppressive factors (including kynurenine, IDO, and IL-

10). In addition, MSCs enhanced liver function and ameliorated

clinical symptoms in patients with hepatitis B virus-mediated

decompensated cirrhosis by significantly downregulating the

expression levels of IL-6 and TNF-a, while upregulating the

expression level of IL-10 (66).
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4.3 Blocking HSC is a key target for MSC
to attenuate liver fibrosis

Blocking the activation of HSCs is one of the most crucial

intervention targets for liver fibrosis (8). Pro-inflammatory

mediators, oxidative stress molecules, and inflammatory

stimulants produced by apoptosis or necrosis of liver

parenchymal cells initiate the activation of HSCs (4). Activated

HSCs subsequently release a variety of inflammatory chemicals

that enhance the liver’s inflammatory response. TGF-b is

considered to be one of the most important signaling

molecules for the activation of HSCs.

According to certain studies, milk fat globule-EGF factor 8

(MFGE8), one of the mediators secreted by MSC, is an anti-

fibrotic protein that prevents the activation of HSCs by

suppressing TGF-b type I receptor (TGFBR1) (67). Moreover,

Caveolin-1, another possible target for MSC therapy, inhibited

HSCs significantly (68). The expression of Wnt pathway-related

proteins such as PPARg, Wnt3a, Wnt10b, b-catenin, and WISP1

and Cyclin D1 is also known to be critical for HSC activation,

and MSC has inhibitory effects on several molecules of this

pathway (19). Ohara et al. (69) demonstrated that amniotic

membrane-derived MSCs (AMSCs) could inhibit HSCs

activation by downregulating the upstream steps of the LPS/

TLR4 signaling pathway without inhibiting downstream NF-kB
transcriptional activity. Qiao et al. (70) proved that hBM-MSCs

significantly inhibited the proliferation of activated HSCs by

inducing the apoptotic process of activated HSCs. Moreover,

hBM-MSCs decreased the expression of peroxisome

proliferator-activated receptor g and a1(I) collagen and a-
smooth muscle actin (a-SMA) in activated HSCs by

decreasing the signalling pathway of NADPH oxidase, thereby

delaying the progression of liver fibrosis.
4.4 MSC’s function in ECM degradation
and remodeling

As mentioned above, liver fibrosis is associated with

excessive ECM deposition and decreased ECM lytic activity.

ECM degradation and remodelling are considered vital targets

for reversing liver fibrosis and delaying the progression of liver

fibrosis. Modulating TGF-b signalling is one of the important

mechanisms of MSC-based modulation of liver fibrosis (8).

MSCs participate in the regulation of TGF-b downstream

pathways. MSCs were able to significantly down-regulate the

mRNA expression of TGF-b1 and TGFBR1 downstream

molecule SMAD3 and increase the mRNA expression of

SMAD7 (71). It has been demonstrated that SMAD3

upregulates the expression of the pro-fibrotic factor a-SMA or
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Col1a1, whereas SMAD7 has an anti-fibrotic impact. ECM

components laminin and hyaluronic acid were significantly

decreased when BMSC overexpressed SMAD7.

In addition, it was demonstrated that by overexpressing

SMAD7, MSC could enhance serum MMP-1 levels and reduce

TIMP-1 levels. MMP-1 is a matrix metalloproteinase that

degrades matrix collagen type I (Col1a1) and collagen type III

(Col3a1). TIMPs, on the other hand, inhibit MMP activity by
Frontiers in Immunology 05
forming reversible covalent complexes with the corresponding

MMPs. MSCs have been demonstrated to induce the infiltration

of host monocytes and neutrophils into the liver and relieve

fibrosis viaMMP release (18). Luo et al. (72) demonstrate for the

first time that BM-MSC transplantation promotes activation of

MMP13-expressing M2 macrophages and suppresses M1

macrophages, which further inhibit HSCs, which play a

synergistic role in attenuating liver fibrosis.
FIGURE 2

The potential mechanisms of MSCs in liver cirrhosis. The development of liver fibrosis is a wound-healing process involving key events,
including hepatocyte injury, immune cell infiltration, HSC activation, and excessive ECM deposition. MSC transplantation can play a therapeutic
role in every stage of liver fibrosis, with immunomodulatory effects playing a central role. EVs, extracellular vesicles; Mj, Macrophages; IDO,
indoleamine 2,3-dioxygenase.
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4.5 MSC can alleviate liver fibrosis via
extracellular vehicles

In addition to direct cell-to-cell contact and paracrine cytokines,

MSC can ameliorate liver fibrosis via extracellular vehicles (EVs).

EVs produced byMSCs include exosomes (40-100 nm in diameter)

and microvesicles (MVs, 0.1-1 mm in diameter). EVs contribute to

the therapeutic potential of MSCs by enhancing intercellular

contacts for the transport of paracrine substances during

angiogenesis, tissue repair, and immunomodulation (73).

Exosomes are nanoscale EVs derived from MVB, secreted into

the extracellular microenvironment by the fusion of MVB with the

plasma membrane. Exosomes can be taken up by target cells in the

local milieu or transported to distant regions via biofluids.

Exosomes contain numerous cytoplasmic and membrane

proteins, such as nucleic acids (miRNA, mRNA, dsDNA, ssDNA,

and mtDNA), ECM proteins, lipids, transcription factors, and

receptors. Currently, the therapeutic mechanism of EVs is based

on two main cargoes, RNA (especially miRNA) and proteins (74).

Exosomes have been shown to play an essential role in critical

events in the development of liver fibrosis, including hepatocyte

injury, immune cell infiltration, HSCs activation, and excessive

ECM deposition (75–77). Several animal models of liver disease,

including liver fibrosis and drug-induced acute liver injury, have

been found to be alleviated by mesenchymal stem cell exosomes

(MSCS-Ex) (78–81). For example, AMSC-Ex significantly

decreased fiber accumulation, KCs number, and HSCs

activation in rats with liver fibrosis. In vitro, AMSC-Ex

significantly inhibited KC and HSC activation and suppressed

the lipopolysaccharide (LPS)/toll-like receptor 4 (TLR4) signalling

pathway. By decreasing collagen production and TGF-1 release,

MSCs-Ex were also able to reduce the severity of liver fibrosis

caused by ClC4 (79, 82). MSC-originated exosomes circDIDO1

sponged miR143-3p in HSCs, causing cell cycle arrest,

suppression, and apoptosis through promoting PTEN and

repressing the ratio of p-AKT/AKT. Furthermore, umbilical

cord mesenchymal stem cell exosomes (UCMSC-Ex) boosted

the expression of the epithelium-associated marker E-cadherin

while decreasing the expression of N-cadherin and vimentin-

positive cells, suppressing EMT and preventing hepatocyte

apoptosis. Jiang et al. (83) demonstrated that UCMSCs-Ex

reduced CCl4-mediated hepatocyte injury and liver fibrosis by

inhibiting hepatocyte apoptosis and oxidative stress. In addition,

MSCs can release immunopotent exosomes, allowing them to

exert immunomodulatory effects on the differentiation, activation,

and functionality of various subsets of lymphocytes. Tamura et al.

(84) found that MSC-derived exosomes increased the production

of anti-inflammatory cytokines and the number of T regulatory

cells in mice with concanavalin A-induced liver injury, indicating

immunosuppressive properties.

The ability of MSCs-Ex to execute drug transport tasks is

another therapeutic use for these cells. Recent research has

demonstrated that MSCs may package and distribute active
Frontiers in Immunology 06
medicines via their exosomes. These studies pave the way for

researching and developing more robust and homing-capable

novel medications employing MSCs. Cell-free treatment

techniques avoid the potential for carcinogenesis, unneeded

differentiation, embolization, cell injection, and infection

dissemination associated with MSCs transplantation (21, 80).

Furthermore, these therapies are safer, less costly, and more

effective. Although MSCs-Ex shows considerable potential for

treating liver disease, the absence of a consistent and efficient

production process remains a key impediment. Thus, additional

studies will be needed to address these important issues.
5 Challenges and future directions

Over the past two decades, there has been a rapid increase in

cell therapy techniques for treating liver fibrosis. These

technologies have accumulated knowledge on enhancing in

vitro cell manipulation and cell transplantation processes to

combat liver fibrosis and enhance liver repair. With the help of

cutting-edge technologies such as bioreactors, microfluidics, and

3D bioprinting, these studies are now contributing to the

development of new technologies aimed at producing in vitro

systems that can yield liver-like tissue or whole bioengineered

livers (85–87). However, it has been reported that MSCs therapy

still has certain limitations for clinical application, including

safety, limited cell survival, standardized production, ethical

concerns, unavailability of trustworthy animal models, and

lack of appropriate injection routes.

First, and perhaps most important, the safety of MSC-based

therapy is still under discussion, especially in the context of long-

term follow-up. A major concern is the undesired differentiation

of transplanted MSCs and their propensity to impair antitumor

immune responses and develop new blood vessels, which may

contribute to tumor development and spread (88). In addition,

neither the administration of MSCs nor their application in

clinical studies has been standardized. Stem cells can readily

differentiate into other cell types (except myofibroblasts),

mediating communication between stem cells and HSCs,

hepatocytes, or other intrahepatic cells associated with liver

fibrosis, thereby triggering an immune response to promote

fibrosis or prevent the reversal of liver fibrosis. Therefore, there

is an urgent need for more sizeable prospective validation trials

to verify the efficacy and safety of this treatment.

Second, low cell survival and poor integration with host

tissue are well-recognized hurdles that confront the field of in

vivo MSC delivery, and these may be improved by the

pretreatment of stem cells (89, 90). Primary stem cells often

fail to achieve the desired therapeutic effect due to poor homing

ability, a low survival rate, and cellular senescence or decreased

viability during in vitro culture. Pretreatments include

transgenics, hypoxia, inflammatory factors, bioactive

compounds, 3D cultures, disease-associated cells, or patient
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serum. For example, the proliferation of HSCs and collagen

deposition in rats with liver fibrosis were more effectively

inhibited by HGF gene-transduced MSC (MSCs/HGF) (91). In

a separate study, miR122-modified ADMSCs (ADMSC-122)

constructed by lentivirus-mediated transfer of miR-122 had a

similar effect (92). HGF is a hepatocyte growth factor that

promotes hepatocyte regeneration, whereas miR-122 is crucial

for inhibiting the proliferation and activation of HSCs. In

conjunction with MSCs, they act on intrahepatic cells to treat

liver fibrosis and overcome the lack of physiological activity of

MSCs cells following transplantation.

Third, the effectiveness and safety of MSCs in treating

patients with liver fibrosis have been studied in numerous

clinical trials over the last decade. According to National

Institutes of Health ClinicalTrials.gov, since January 1, 2012,

44 relevant clinical studies have been registered, 9 of which have

been completed. Of these, China (23 cases; 52.3%), Vietnam (4

cases; 9.1%), India (3 cases; 6.8%), Japan (3 cases; 6.8%), South

Korea (2 cases; 4.5%), and Belgium (2 cases; 4.5%) are the top six

countries. In terms of cell origin, MSCs can be derived from

human umbilical cord (14 cases; 31.82%), bone marrow (10

cases; 22.7%), adipose tissue (3 case; 6.8%), teeth (1 case; 3.2%),

and unknown (16 cases, 36.4%). Simultaneously, several studies

describing the outcomes of clinical trials using MSCs have been

published. For instance, Yuwei et al. (93) published a meta-

analysis and systematic review of randomized controlled trials

(RCTs) to assess the efficacy and safety of MSCs therapy for

patients with chronic liver disease. They evaluated 12 RCTs,

including 846 patients who met their selection criteria. The

results indicated that MSCs improved liver function compared

to conventional treatment, primarily in ALB, TBIL, MELD score,

and coagulation levels, but there were no significant changes in

ALT and AST levels. Furthermore, MSCs treatment could not

significantly improve the overall survival rate, with only a

slightly positive trend. Five of these studies reported that the

only side effect of MSC treatment was fever, with no other

serious side effects. In terms of cell source, these clinical trials

also show a tendency toward shifting from autologous to

allogeneic MSCs. Allogeneic MSCs do not require the painful

and complicated process of autologous cells collection (94). In

addition, some MSCs can be made into off-the-shelf products

due to the absence of immune rejection and the potential for

massive expansion. Among these, UCMSC is a promising stem

cell that is expected to be produced commercially (95). Many

studies have shown that UCMSCs are an ideal source of MSCs

because of young cellular age, relative ease of collection, easy

batch production, and low allogeneic reactivity (96, 97).

In addition, there are various routes of MSC transplantation,

including trans-portal, hepatic artery, peripheral vein

transplantation, intrasplenic transplantation, peripheral vein

transplantation, intrahepatic and abdominal transplantation,

and the respective characteristics of these routes remain

unknown. Under identical conditions, MSCs from different
Frontiers in Immunology 07
transplantation routes have different biodistribution in vivo.

They may exert their effects on liver fibrosis via mechanisms

influenced by the microenvironment, resulting in different

therapeutic effects on fibrosis. Selecting a suitable stem cell

transplantation route to increase the amount of stem cell

colonization in liver tissue, enhance cell activity, and maintain

the survival time of stem cells in liver tissue may be beneficial to

improve the anti-fibrotic effect of MSCs. The indications for

different transplantation routes in clinical practice must be

further investigated (98, 99).

In contrast to cell-based pretreatment, cell-free therapy is a

hot topic for future research. Cell-free strategies have low

tumorigenic potential, low preservation costs, and low risk of

exogenous infection and thrombosis. Unfortunately, no clinical

trial has involved the use of stem cell-derived EVs to treat liver

fibrosis and cirrhosis. This phenomenon is primarily due to the

lack of standardized methods for extracting large numbers of

EVs and the unknown dose and half-life of EVs.
6 Conclusion

The immune response is crucial to the genesis and

progression of liver fibrosis. Due to their immunomodulatory

properties, hepatic differentiation potential, and capacity to

produce trophic factors, MSCs and MSC-Ex have emerged as

promising agents for treating liver fibrosis. However, many

issues need to be addressed before MSCs can be used

clinically, including sufficient cell numbers, higher integration

efficiency, consistency of in vitro and in vivo studies, and optimal

timing and route of cell transplantation. Therefore, large

randomized controlled clinical trials with longer follow-up

periods and experimental animal studies are needed to

improve the safety and efficacy of MSCs for fibrosis treatment.
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