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Abstract 

Parkinson’s disease (PD) is the second most predominant neurodegenerative disease worldwide. It is recognized 
clinically by severe complications in motor function caused by progressive degeneration of dopaminergic neurons 
(DAn) and dopamine depletion. As the current standard of treatment is focused on alleviating symptoms through 
Levodopa, developing neuroprotective techniques is critical for adopting a more pathology‑oriented therapeutic 
approach. Regenerative cell therapy has provided us with an unrivalled platform for evaluating potentially effective 
novel methods for treating neurodegenerative illnesses over the last two decades. Mesenchymal stem cells (MSCs) 
are most promising, as they can differentiate into dopaminergic neurons and produce neurotrophic substances. The 
precise process by which stem cells repair neuronal injury is unknown, and MSC‑derived exosomes are suggested to 
be responsible for a significant portion of such effects. The present review discusses the application of mesenchymal 
stem cells and MSC‑derived exosomes in PD treatment.

Keywords: Mesenchymal stem cell, Exosome, Parkinson’s disease, Therapeutic application

© The Author(s) 2022. Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which 
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the 
original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or 
other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line 
to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/. The Creative Commons Public Domain Dedication waiver (http:// creat iveco 
mmons. org/ publi cdoma in/ zero/1. 0/) applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Introduction
PD occurs as a result of dopamine depletion, loss of neu-
rons in substantia nigra (SN), and Lewy body build-up 
in other brain areas [1–3]. Patients with PD experience 
bradykinesia, stiffness, tremors at rest and unsteady gait 
as their motor abilities deteriorate [2, 3]. Deep brain 
stimulation or therapies to increase DA levels by admin-
istering a DA precursor (Levodopa) are the currently 
available therapy options for PD. However, L-DOPA 
therapy has little effect on the progression of PD, and its 
efficacy decreases as the disease progresses. At the same 
time, undesirable symptoms such as dyskinesia might 
also occur [4–6]. In  vitro studies have shown that stem 

cells can differentiate into DAn [7–12] and accelerate the 
recovery of injured DAn [13–17].

Stem cells can be classified according to their ori-
gin: hematopoietic stem cells, neural stem cells, epithe-
lial stem cells, skin stem cells, mesenchymal stem cells 
(MSCs), embryonic stem cells (ESCs), induced pluripo-
tent stem cells (iPSCs), and neural stem cells (NSCs) [18]. 
MSCs can be originated from different sources, includ-
ing adult bone marrow, adipose tissue, peripheral blood 
and various neonatal birth-associated tissues and they 
can also be induced in  vitro to differentiate into osteo-
blasts, chondrocytes, adipocytes, and other cell types 
[19]. MSCs are multipotent non-hematopoietic cells 
with certain advantages over others. MSCs have a mini-
mal immunogenicity, no risk of teratoma, and no ethical 
issues. Another advantage is their potential for individu-
alized therapy, as MSCs can be obtained from the same 
patients without triggering immunological reactions. 
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Furthermore, MSCs have a low risk of tumorigenesis 
after transplantation into humans or animals [18]. How-
ever, recent investigations have suggested that the parac-
rine actions of MSCs are mediated by the formation and 
release of extracellular vesicles (EVs) [20]. Exosomes are a 
subtype of EVs that range from 30 to 150 nm in size and 
are secreted by all living organisms cells [21, 22]. MSCs 
and their exosomes have been used in several clinical 
studies around the world to treat a variety of diseases, 
such as bone and cartilage pathologies[23], diabetes, car-
diovascular disease, immune-related and neurological 
problems, as well as diseases of the lungs, kidneys, and 
liver [24–26]. This therapeutic technique may be ben-
eficial for presently incurable diseases. Still, important 
uncertainties remain about the administration routes, 
ideal MSC dosage, best engraftment period, and the des-
tiny of the cells being infused [27]. In the present article, 
we will focus on the therapeutic potential of MSCs and 
their exosomes in treating PD.

Pathophysiology of PD
PD is a degenerative disease that affects 0.3% of the 
population and causes progressive impairment in motor 
function [28]. Misfolded proteins, such as a-synuclein, 
as a possible pathologic agent, accumulate abnormally in 
the brain [29], causing Lewy body dementia, PD demen-
tia, multisystemic atrophy and PD.

Toxic a-synuclein oligomers and protofibrils [30] can 
be transmitted from one cell to another in a prion-like 
way [31]. This is thought to facilitate the pathogenesis of 
PD, as a-synuclein oligomers are known to spread from 
the basal to the neocortical parts of the brain [32]. In 
addition to a-synuclein build-up, an amyloid-beta and 
tau containing a-synuclein coaggregation were recently 
discovered [33–35]. Specific mechanisms underlying 
neuronal degeneration in PD are yet to be identified. 
However, infectious agents [36], pesticides [37], heavy 
metals [38], and rural life [39] have been recognized as 
risk factors for PD.

Although environmental risk factors for Parkinson’s 
disease have attracted a lot of attention, the role of 
genetic variables in determining the possibility of having 
the disease is becoming more widely realized. Although 
familial types of PD account for less than 10% of all cases, 
the identification of multiple genes (e.g., parkin, DJ1[a 
parkin-associated protein involved with oxidative stress], 
α-synuclein, UCHL1 [ubiquitin carboxy-terminal hydro-
lase L1], and PINK1 [putative serine-threonine kinase]) 
that cause early onset PD has provided vital information 
about possible pathological pathways [40]. Many other 
genes have been linked to the parkinsonian phenotype; 
however, neurological testing frequently reveals other 
signs such as ataxia, dystonia, or dementia [41].

The pathogenesis of PD is influenced by cell metabo-
lism and protein clearance. Degeneration of noradren-
ergic neurons in the locus coeruleus could be associated 
with depression and dementia [42]. Depression can also 
be caused by the degeneration of serotonergic neurons in 
the median raphe and raphe obscurus [43].

Modulatory effects of MSCs on PD
Recently, dysregulation of the autophagy system has been 
identified in the brains of PD patients and animal models 
of the condition, suggesting a potential role for autophagy 
in PD [44]. In PD models, MSCs have been demonstrated 
to improve a-syn clearance and regulate autophagy-lyso-
somal activity [45]. MSCs may activate autophagy signal-
ing through upregulation of Beclin-1 [46], a key positive 
regulator of mammalian autophagy. The secretome of 
MSCs has been found to contain numerous components 
associated with autophagy signaling in cell-based experi-
ments through induction of autophagy-related genes, 
including beclin-1 (BCEN1), Gamma-aminobutyric acid 
receptor-associated protein-like 1 (GABARAPL1) and 
Autophagy related 12 (ATG12). The secretome of MSCs 
drives PI3K/Akt activation and modulates different 
signaling pathways to improve nutrient absorption, cell 
growth, metabolism, and proliferation [47, 48].

According to several investigations, MSCs exhibit 
immunomodulatory effects after infiltrating to injury 
sites in response to particular chemotactic recruitment 
[49] and releasing numerous growth and immunoregu-
latory factors, so they can alleviate inflammation and 
improve tissue healing [50]. Therefore, MSC-based cell 
therapy has been used to modulate inflammation and 
accommodate tissue regeneration in treating many neu-
roinflammatory and neurodegenerative illnesses such as 
Parkinson’s disease [51].

MSCs are also believed to have immunoregulatory 
effects since they might induce inflammation when the 
immune system is underactive and suppress inflamma-
tion when the immune system is overactive. This pro-
cess is often referred to as the immune system’s "sensor 
and switcher" [52]. In animal models of epilepsy and 
PD, MSC therapy increased anti-inflammatory cytokine 
levels like Transforming growth factor-beta1 (TGF-
β1), Prostaglandin E2 (PGE2), Hepatocyte growth fac-
tor (HGF), Indoleamine 2,3 dioxygenase (IDO), Nitric 
oxide (NO), interleukin 4 (IL-4) and interleukin 10 (IL-
10), while decreasing pro-inflammatory cytokine levels 
(such as interleukin-6 (IL-6), Interleukin-1beta (IL-1β), 
Tumor necrosis factor-alpha (TNF-α)) in the brain and 
blood[53–56]. Consistent with these findings, it has been 
proposed that TNF promotes the immunosuppression 
capacity of MSCs by increasing the expression of TNF-α 
stimulated gene/protein-6 (TSG-6) to limit microglial 
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activation (56) effectively. More importantly, an investi-
gation found that MSCs might alter local microglia from 
a pro-inflammatory state to an anti-inflammatory state 
via the CX3CL1/CX3CR1 signaling axis [57].

On the other hand, some therapeutic effects appear 
to be dependent on MSC-released neurotrophic factors 
(Glial cell-derived neurotrophic factor (GDNF), Nerve 
growth factor (NGF), Brain-derived neurotrophic factor 
(BDNF)), which can inhibit DA neurons apoptosis and 
enhance neurogenesis by secreting proangiogenic and 
mitotic factors like Vascular endothelial growth factor 
(VEGF) and, fibroblast growth factor 2 (FGF2) [58, 59].

Preclinical studies of MSC therapy on PD
Bone marrow‑derived MSCs
Recently Bouchez et  al. used rat bone marrow mesen-
chymal stem cells (BMSCs) to treat PD in animal models. 
In this study, rat BMSCs were administered to the same 
location in adult rats that had been injured by unilat-
eral striatal injection of 6-hydroxydopamine (6-OHDA) 
[15]. The frequency of amphetamine-induced rotations, 
caused by the pre-synaptic positive regulatory effect of 
amphetamine on synaptic concentrations of dopamine, 
was dramatically reduced in transplanted rats compared 
to the control group. This test evaluate the motor impair-
ment induced by lesions in PD disease [60].The level of 
dopaminergic biomarkers in nerve endings and cell bod-
ies was largely recovered. This effect was attributed to the 
survival of dopaminergic neurons and budding from the 
remaining nigrostriatal fibers.

In a 6-OHDA animal model, intracarotid injection of 
rat BMSCs was tested by Cerri et  al. [61]. While there 
was no change in the progression of 6-OHDA-induced 
lesion or motor impairment, there was a gradual normal-
ization of the pathologic reaction to apomorphine treat-
ment. The authors stated that arterial administration of 
BMSCs might result in functional compensatory modifi-
cations in the nigrostriatal pathway, but neuroprotective 
effects remain unknown.

Intravenous (IV) delivery of rat BMSCs was investi-
gated in another animal model of PD created by subcuta-
neous (SC) administrations of rotenone and ovariectomy 
[62]. Ahmed et al. demonstrated that BMSCs were capa-
ble of spreading in the damaged brain and resulted in a 
significant drop in serum TGF-1 concentrations, as well 
as an elevation in nestin gene expression and brain tyros-
ine hydroxylase (TH). DA levels in the brain and serum 
BDNF were likewise raised. The anti-inflammatory, 
immunomodulatory, and neurotrophic actions of BMSCs 
are thought to be responsible for normalizing these indi-
cators. The striatum’s histologic integrity was also pre-
served in the brain slices [62].

To achieve functional benefits, the appropriate dosage 
and delivery rate will be better identified in future investi-
gations. Intranasal administration of murine BMSCs was 
also evaluated in a rat model created by intraperitoneal 
(IP) rotenone administrations [63]. Histological analysis 
in various brain areas confirmed the successful survival 
of MSCs. Nigral dopaminergic neurons and striatal TH-
positive fibers were retained considerably. Furthermore, 
neurobehavioral testing revealed that MSC treatment 
could slow the gradual rotenone-induced loss of locomo-
tor capabilities [57].

Adipose tissue‑derived MSCs
In another study by Schwerk et  al., seven days after the 
medial forebrain bundle was entirely damaged by admin-
istrations of 6-OHDA, autologous adipose tissue-derived 
mesenchymal stem cells (AD-MSCs) were grafted into 
the substantia nigra of rats [64]. Compared to untreated 
animals, enhanced subventricular zone (SVZ) neurogen-
esis was observed three days following transplantation. 
This observation is intriguing because impairment of the 
SVZ-olfactory bulb pathway is believed to be the etiol-
ogy of hyposmia in PD patients. Transplanted AD-MSCs 
were predominantly seen in the SN area and the adjacent 
arachnoid mater. Some cells with endothelial character-
istics were also discovered adjacent to arteries. This line 
of differentiation could be effective in amending vascular 
changes (Table 1).

In their prospective study [54], Schwerk et al. reported 
the presence of AD-MSCs near the arachnoid mater and 
the SN, where they expressed pericyte and endothelial 
biomarkers. Improved memory performance, upregula-
tion of systemic anti-inflammatory cytokines, conserved 
levels of dopamine, and enhanced neurogenesis in hip-
pocampus and SVZ were attained following transplanta-
tion of AD-MSCs. However, improvements in cognitive 
functions were not matched by gains in motor abilities.

Human dental pulp‑derived MSCs
Human dental pulp stem cells (h-DPMSCs) have also 
yielded promising results, according to Chun et al. exper-
iments in vitro [68]. It has been shown that DPMSCs can 
develop into neural lines when cultivated in specific con-
ditions, and an increase in TH expression was also found 
in some of these cells.

Human conjunctiva‑derived MSCs
Another in vivo study on the rat model of PD by Forou-
zandeh et  al. found that MSCs obtained from human 
conjunctiva (CJ-MSCs) exhibited protective effects 
against PD sequelae and nerve induction of cells owing to 
their capability to release dopamine. On the other hand, 
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CJ-MSC microencapsulation leads to an even more sig-
nificant protective impact of CJ-MSCs [65].

Clinical trials of MSC therapy on PD
Bone marrow‑derived MSCs
Autologous BMSCs were grafted into the SVZ of seven 
patients with severe PD in a prospective, uncontrolled, 
pilot study by Venkataramana in 2010 [69]. This brain 
area was selected because it possesses the greatest 
amount of NSCs participating in neurogenesis. The Uni-
fied PD Rating Scale (UPDRS), Schwab and England 
(S&E), and Hoehn and Yahr (H&Y) scales were used to 
assess clinical circumstances throughout a 10–36 month 
period. Symptoms like facial expression, gait, and freez-
ing periods were also reported to have improved sub-
jectively. Furthermore, in two cases, the L-DOPA doses 
were dramatically lowered. Although the particular 
mechanisms are unknown, this experiment has validated 
the procedure’s safety, as none of the patients experi-
enced clinical exacerbation until the completion of the 
monitoring period. Furthermore, there were no aberrant 
parenchymal alterations on cerebral magnetic resonance 
imaging [69].

Furthermore, modified MSCs that had been differenti-
ated into dopaminergic cells were directly inserted into 
the femoral artery that supplies the substantia nigra in a 
recent trial on 53 PD patients [70]. The findings demon-
strate that intra-arterial autologous BMSCs transplan-
tation is a safe and effective therapy and eliminates the 
tumorigenesis and immunological reactions risks. This 
is supported by the fact that none of the patients treated 
with this method developed severe adverse complica-
tions, and as the study suggests, all participants were able 
to leave the hospital the day after receiving MSC infusion.

In another pilot study by Canesi et  al., five patients 
with progressive supranuclear palsy, an uncommon and 
severe form of parkinsonism, were given bone marrow-
derived MSCs by administration into the cerebral arteries 
[71]. All treated patients survived a year after cell infu-
sion, except one, who died nine months later for causes 
unrelated to cell administration or progression of the 
disease (accidental fall). During the one-year follow-up, 
motor function assessment scales in all treated individu-
als remained steady for at least six months. In late 2021, 
Schiess et al. confirmed the safety and tolerance of intra-
venous administration of bone marrow-derived MSCs 
on 20 subjects with mild to moderate PD, who exhibited 
reduced UPDRS scores by the end of a one-year follow-
up interval [72].

Human umbilical cord‑derived MSCs
Ever since Venkataramana in 2010 [69], several other 
investigations have been conducted to confirm the 

efficacy of MSC therapy on PD using the scales men-
tioned above. In 2011, Qiu et  al. performed human 
umbilical cord-derived MSC (hUC-MSC) transplanta-
tion on 8 patients with PD, observing a clinical improve-
ment in UPDRS within a month from transplantation 
[73]. Three years later, in 2014, Wang et  al. enrolled 15 
patients with PD (H&Y staging: 3 – 5) into an experimen-
tal program on hUC-MSC transplantation, demonstrat-
ing a significant decreased in UPDRS within a month 
after the intervention [74]. In 2016, similar results were 
reported by a limited trial on intravenous transplanta-
tion of allograft hUC-MSCs in 5 PD cases, that led to 
reduced disease severity in 3 out of the 5 patients, based 
on UPDRS, in three months [75]. More recently, in 2020, 
Boika et  al. explored the efficacy of autologous MSC 
transplantation on 12 PD patients. The therapy’s effec-
tiveness was assessed one and three months after the 
transplant. UPDRS was used to determine the severity of 
motor symptoms. In the post-transplant period, they dis-
covered a statistically significant reduction in the severity 
of motor and nonmotor complaints in the study partici-
pants [76].

Adipose tissue‑derived MSCs
Most recently, in early 2022, Shigematsu et al. treated 3 
PD patients with 5 – 6 repeated infusions of autologous 
adipose tissue-derived MSCs, denoting a significant clini-
cal improvement in terms of UPDRS in all three subjects 
[77].

The summary of clinical trials of MSC therapy for PD is 
presented in Table 2.

Exosomes; Act as MSC paracrine mediators
Definition of exosome
Exosomes are EVs derived from the endosomal complex 
[78]. EVs are divided into three categories based on their 
size, cargo, and origin: exosomes, microvesicles, and 
apoptotic bodies [79, 80]. Among EVs, exosomes are the 
smallest group; they have a size of 30 to 150 nm and can 
be extracted by centrifugation from all body fluids such 
as breast milk, blood, urine, amniotic and synovial fluid, 
ascites, and pleural effusions [81]. Exosomes are secreted 
by most cell lines, including neurons,  immune cells,   
epithelial and endothelial cells [82], and have cytosolic 
substances and phospholipid bilayer that are similar to 
those of the donor cells [83]. In addition to creating sta-
bility and durability of the membrane, the exosome lipid 
bilayer membrane has a role in other activities such as 
absorption and fusion by the target cells. Phosphatidyl-
serine  (PS), for example, is involved in exosome sprout-
ing and merging due to its enhanced flexibility [84]. 
Lysosomal-associated membrane protein (LAMP), tet-
raspanins (CD81, CD82, CD9, CD63), GTPases, major 
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histocompatibility complex-I and II (MHC I-II), CD13, 
intercellular adhesion molecule-1 (ICAM-1), fusion 
proteins such as tumor susceptibility gene 101 pro-
tein (TSG101), annexin, integrin, heat shock protein 90 
(HSC90) and HSC70 are other molecules found abun-
dantly in exosomal membranes [22, 85–87]. These cyto-
solic-loaded membrane proteins function as biomarkers 
for a variety of clinical diseases. Exosomes include a 
specific collection of protein groups from intracellular 
domains such as the plasma membrane, endosomal path-
way, and cytoplasm [78]. Messenger RNAs (mRNA) and 
microRNAs (miRNA) are also found in exosomes and 
can carry genetic information to target cells [88].

Exosomal nucleic acids
As explained previously, nucleic acids like miRNAs con-
stitute a significant component of exosomes [89]. Sev-
eral disorders, including PD, have been shown to involve 
alterations in gene expression, particularly at the miRNA 
stage [90]. MiRNAs generated from exosomes have also 
been identified as possible diagnostic markers and tar-
geted therapeutics (Fig. 1).

MiRNAs are a type of non-coding RNA that plays a 
crucial role in gene expression regulation. MiRNAs often 
interact with the 3′ untranslated region (3′-UTR) of tar-
get mRNAs to cause mRNA degradation and transla-
tional inhibition. However, miRNAs have been shown 
to interact with other areas such as the 5′-UTR, cod-
ing sequences, and gene promoters. MiRNAs can also 

Table 2 The summary of clinical trials MSC application in the treatment of PD

Action and target 
cell

Investigators Year and location Estimated 
enrollment

Purpose Status Trial phase Clinical Trials ID

Intravenous adminis‑
tration of autolo‑
gous bone marrow 
derived MSCs

Yang Xiao
Li Li

2011
Guangzhou 
General Hospital of 
Guangzhou Military 
Command

20 Safety and 
efficacy

Unknown Phase 1/2 NCT01446614

Intra‑arterial 
administration of 
autologous bone 
marrow derived 
MSCs in progressive 
supranuclear palsy

Rosaria Giordano 2012
Fondazione 
IRCCS Ca’ Granda, 
Ospedale Maggiore 
Policlinico

25 Safety and 
efficacy

Unknown Phase 1/2 NCT01824121

Intra‑arterial and 
intravenous adminis‑
tration of autologous 
adipose‑derived SVF 
cells

Sharon McQuillan 2014
Ageless Regenera‑
tive Institute

0 Safety and 
efficacy

Recruiting partici‑
pants

Not Applicable NCT01453803

Autologous adipose‑
derived SVF cells. 
Route of administra‑
tion not defined

StemGenex 2014
StemGenex San 
Diego

75 Safety and 
efficacy

Unknown NCT02184546

Intravenous adminis‑
tration of allogeneic 
bone marrow‑
derived MSCs

Mya Schiess 2017
The University 
of Texas Health 
Science Center, 
Houston

20 Safety, fea‑
sibility, and 
efficacy

Recruitment com‑
pleted

Phase 1 NCT02611167

Intravenous admin‑
istration of Umbilical 
Cord Derived MSCs

Xiqing Chai 2018
Hebei Newtherapy 
BIo‑Pharma Tech‑
nology Co., Ltd

20 Safety and 
efficacy

Enrolling by invita‑
tion

Phase 1 NCT03550183

Intrathecal and 
Intravenous admin‑
istration of umbilical 
cord derived MSCs

Abdallah Awidi 2018
University of Jordan

10 Short term 
and long 
term safety

Recruiting Phase 1/2 NCT03684122

Infusion of alloge‑
neic bone marrow‑
derived MSCs

Mya C Schiess 2020
The University 
of Texas Health 
Science Center, 
Houston

45 Safety and 
efficacy

Not yet recruiting Phase 2 NCT04506073
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initiate translation or regulate transcription under cer-
tain situations [91].

In animal cells, miRNAs are generated in two phases, 
beginning with primary miRNAs and continuing with 
Drosha/DGCR8 RNase in the nuclei and Dicer RNase 
in the cytoplasm [92]. It was discovered that Dicer defi-
ciencies in the midbrain rats might result in progressive 
destruction of DAn. Also, post-mortem cerebral exami-
nation revealed DAn loss and Lewy body formation when 
the DiGeorge syndrome critical region 8 (DGCR8) gene 
was eliminated [93, 94]. Exosomes seem to assist exog-
enous miRNA distribution to target cells. Regardless, 
the processes of target absorption should be thoroughly 
investigated [95].

MSC‑derived exosome characteristics
Having established the definition of exosomes as nano-
scopic particles derived from MSCs, one might con-
clude that they are, in effect, the mediators of MSC 
functions in a paracrine fashion [96]. Similar to other 
exosomes, MSCs-derived exosomes transport a com-
plex cargo of lipids, proteins, and nucleic acids. MSC-
derived exosomes are particularly suitable for this role 
due to their high enzyme content [97]. This is because 
many enzymes’ catalytic activity is controlled by feedback 
mechanisms influenced by the tissue microenvironment. 
By supplying catalytically active enzymes to support 

tissue homeostasis, MSC-derived exosomes might be 
able to restore normal tissue function to some extent, 
though, such speculations should be validated by pro-
spective investigations.

The activity of an enzyme is proportional to the rela-
tive concentrations of its substrate and product, and it 
stops when the concentrations of its substrate and prod-
uct are in equilibrium. Because an injury-induced change 
in the relative concentrations of substrate and prod-
uct is expected to be proportional to the degree of the 
injury, exosomes might construct a measurable biologi-
cal response proportionate to the severity of the injury. 
In contrast, improving the damage restores substrate 
and product balance, resulting in the termination of 
enzyme activity. As a result, the enzyme-centric nature of 
exosomes reduces the possibility of over-or under-dosing 
[98].

Exosomes produced from MSCs have also been found 
to contain cytokines and growth factors such as IL-6, 
IL-10, HGF and TGFβ-1; all of them have a role in regu-
lating the immune system [99]. Comparable quantities of 
extracellular matrix metalloproteinase inducer (EMM-
PRIN), Matrix Metalloproteinase-9 (MMP-9) and VEGF 
have been found in MSC-derived exosomes; all of which 
are important in inducing angiogenesis, which may be 
essential for tissue repair [100]. Many miRNAs have 
been discovered in MSC-derived exosomes, and they are 

Fig. 1 (1) Exosomes are separated from cell culture and bodily fluids using a variety of techniques. (2) They contain a series of Rab proteins, 
tetraspanins, heat shock proteins, intercellular adhesion molecule (ICAM‑1), endosome‑associated proteins (TSG101), and nucleic acids such as 
mRNAs and mRNAs, according to fluorescence‑activated cell sorting (FACS), mass spectrometry analyses, and Western blot



Page 8 of 14Heris et al. Stem Cell Research & Therapy          (2022) 13:371 

thought to be involved in physiological and pathological 
pathways like organism development, epigenetic regula-
tion, immunoregulation (miR-155 and miR-146) [101], 
carcinogenesis, and tumor growth [102].

MSC-exosomes have been studied for their immu-
nomodulatory characteristics [103]. Exosomes produced 
by BM-derived MSCs can effectively treat chronic graft-
versus-host disease (cGVHD) in mice by suppressing 
 CD4+ T cell activation and infiltration, lowering pro-
inflammatory cytokine production, enhancing the forma-
tion of IL-10-expressing Treg cells, and suppressing Th17 
cells [104]. In animal models of type 1 diabetes  (T1D) 
and experimental autoimmune uveoretinitis, EVs derived 
from human multipotent stromal cells decrease autoim-
munity. EVs inhibited antigen-presenting cell  (APCs) 
activation and suppressed the growth of T helper 1 and T 
helper 17 cells, as well as increasing the immunosuppres-
sive cytokine IL-10 [105].

BMSCs-derived exosomes increases Treg proliferation 
and immunosuppressive capacity in asthmatic patients’ 
peripheral blood mononuclear cells (PBMCs) via up-
regulation suppressive cytokines TGF-1 and IL-10 [106]. 
hUC-MSC-derived exosomal MiR-181c have an impor-
tant role in anti-inflammatory activities in a burnt rat 
model via inhibiting the TLR-4 signaling cascade [107]. 
Furthermore, MSC-derived exosomes suppressed com-
plement-mediated destruction of sheep red blood cells 
in a CD59-dependent way, implying that CD59 on the 
exosome membrane might reduce complement activa-
tion and hinder the generation of the membrane attack 
complex [97]. These findings demonstrate MSC-derived 
exosomes’ immunomodulatory activity and support their 
potential to restore immunological homeostasis in a tis-
sue (Fig. 2).

Exosomes’ advantages in PD
There is currently no accurate diagnostic method for PD. 
Exosomes play two role in PD: diagnostic markers and 
therapeutic agents. Elevated leucine-rich repeat kinase 2 
(LRRK2) mutations in urine have recently been linked to 
idiopathic PD and the intensity of cognitive impairment 
[108–110]. Another research revealed that the concen-
tration of the L1 cell adhesion molecule (L1-CAM) was 
much more in PD patients and that it was linked with 
a-synuclein level and tau concentrations in cerebrospinal 
fluid (CSF) [111–114]. The expression patterns of mRNA 
and miRNA in PD exosomes act as a diagnostic method 
for the disease. For treatment, exosomes generated from 
DPSC have been discovered to prevent 80% of dopa-
mine neuron death in PD models [115]. Also, a recent 
study on a PD model demonstrated that exosomes pro-
duced by MSCs could retain human brain microvascular 

endothelial cells (HBMECs) in a transcriptionally active 
mode, which may be favorable for angiogenesis [116]. In 
conclusion, the use of exosomes in the treatment of PD 
is still in its initial phases, but they are largely applied in 
diagnosis. Although no reliable exosome-based diagnos-
tic tool is currently available for PD.

Challenges of stem cell therapy
MSCs source
The primary source of stem cells is a critical subject to 
address in order to minimize an immunogenic reaction, 
especially if persistent immunosuppressive therapy is 
to be prevented. Because of the minimal risk of rejec-
tion, autologous stem cells would be ideal for grafting. 
However, one negative aspect of autologous transplants 
is that grafted cells may keep the genetic abnormali-
ties or risk factors resulting from the onset of PD [117]. 
Though, regardless of the potential immune reactions 
that might ensue transplantation, isolation of MSCs 
from candidate donors, based on the source tissue, can 
be a laborious task. For instance, less than 0.01% of the 
cells residing in bone marrow are MSCs, and this aston-
ishingly low prevalence makes their isolation consider-
ably difficult [118], particularly when one considers 
the fact that bone marrow aspiration is an invasive and 
painful procedure, and not all donors would opt to par-
ticipate in such procedure. In this sense, adipose tissue 
might provide a better source for extraction of MSCs, 
as it is not as deeply located as the bone marrow, is 
more abundantly distributed throughout the body and 
can be accessed through less invasive methods [119].

Graft location
Several methods are currently available, either experi-
mentally or practically, for transplantation of MSCs. 
In a more general sense, MSCs can be administrated 
either systemically or locally. Systemic transplanta-
tion is achieved via intravenous/intra-arterial infusion 
or inhalation of MSCs. While systemic transplantation 
allows MSC-based treatment of pathologies affecting 
the entire body, local transplantation aims to alleviate 
symptoms associated with illnesses that originate from 
certain organs, and is mostly performed through intra-
muscular or direct tissue injection. Each of these are 
limited in their own field [120].

The dopaminergic neurons are predominantly 
depleted in PD in the substantia nigra pars compacta 
(SNpc). These neurons send dopamine to the receiving 
cells via the putamen and caudate nuclei. As a result, 
several SNpc cell therapy trials in animals transplant 
dopaminergic neurons ectopically into striatums [121, 
122]. However, since the human neural network is 
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significantly larger than rat brains, the size of neuronal 
extensions may still be insufficient to stimulate the 
striatum if the cells are transplanted in the SNpc. As a 
result, transplanting into the putamen, where dopamin-
ergic neurons finally innervate, is still the best option.

Graft cell count
Several studies have demonstrated that stem cell-
derived dopaminergic transplants persist in animals 
after graft for at least 2 years. Still, fetal-derived dopa-
minergic transplants have persisted in human hosts for 
more than a decade. Several investigations have found 

that a grafting could be a suitable method for the long-
term survival and functioning of transplants [122–124]. 
In the case of dosing, the average dose of each MSC 
therapy session in experimental animal models is usu-
ally 50 million cells per every kg of weight. Though, the 
baseline dose in human studies is 1–2 million cells/kg 
and rarely exceeds 12 million MSCs/kg [125]. Accord-
ing to a 2020 systematic review by Katab et al., intrave-
nous infusion of MSCs is the most commonly preferred 
route of transplantation practiced in 43% of all clini-
cal trials on MSC therapy, with every single dose per 
patient containing a median count of 100 million 

Fig. 2 (1) Secretion of α‑syn can occur via secretory lysosomes (exocytosis), microvesicle shedding, or multivesicular bodies, with the second and 
third methods including the release of α‑syn into exosomes. α‑Syn can be eliminated from the extracellular space by proteolysis. One of the tiny 
molecules implicated in the proteolytic degradation of aggregated α‑syn would be MMP2, a factor generated from MSCs. MMP‑2 produced from 
MSCs breaks freshly formed amyloid fibrils, resulting in a considerable decrease in the quantities of insoluble and oligomeric α‑syn. (2) Furthermore, 
tiny compounds generated from MSCs alter PI3K/Akt signaling, which ultimately regulates multiple downstream targets to increase autophagy. 
Upregulation of PI3K/AKT promotes autophagy via regulating the expression of autophagy‑related genes such as BECN1, ATG, and GABARAPL1. As a 
result, autophagic flux upregulation by MSC derived small molecules increases the clearance of harmful α‑syn aggregates and so plays a vital role in 
maintaining α‑syn homeostasis in the PD‑related milieu. (3) MSC interactions with immune system cells, with primary signaling pathways revealed. 
(4) MSCs secrete neurotrophic factors like as BDNF, NGF, and FGF‑2, which interact with injured axons and cause axonal regrowth. 5) When activated 
by pro‑inflammatory mediators, MSCs release paracrine factors such as TSG‑6 and IL‑4. Paracrine factors stimulate M2 macrophage polarization, 
resulting in an elevated Th2 response
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MSCs. Intravenous infusion of as many MSCs has often 
been deemed as safe and effective, rarely resulting in 
adverse effects beyond transient fever [126].

Removing the risk of neoplasia
When implanted into patients, PSCs resistant to differ-
entiation stimuli poses an increased neoplasia risk [127]. 
Multiple techniques for mitigating this danger have been 
developed, broadly classified as removing stem cells from 
ultimate cultures and purifying the target cell types. For 
example, undifferentiated PSCs exhibit distinct cell sur-
face biomarkers [128]. Although this "negative-sorting" 
technique has effectively removed undifferentiated PSCs 
in a mixed culture [129].

Moreover, in order to make stem cells more clini-
cally reliable, the process by which stem cells function 
in experimental animals should be properly known, and 
patients would be able to use stem cell therapy instead 
of expensive drug treatment when faced with organ fail-
ure [130]. Also, bioengineering methods, such as loading 
MSCs with oncolytic viruses and recombinant genes, can 
be employed to address the challenges mentioned earlier 
and provide more effective and predictable MSC thera-
pies [131–133].

Advantages of MSCs over other stem cell lines
PD is a devastating neurological condition that affects 
millions of individuals worldwide; yet, the molecular and 
cellular pathways that cause it are still unknown. Despite 
improvements in Parkinson’s disease research, current 
pharmaceutical options improve PD patients’ quality of 
life but do not prevent PD progression or boost dopa-
minergic neuron viability. Because of their capacity to 
promote dopaminergic neurons viability, stimulate neu-
rogenesis, reduce neuroinflammation, and enhance func-
tional recovery in the in  vivo models, cell therapy with 
MSCs and their derived exosomes has recently been pro-
posed as an efficient treatment method for a variety of 
neurodegenerative disorders, including PD.

In any case, investigations involving MSC and PD 
point to the possibility that these cells could be used as 
a standard treatment in the coming years. The ability of 
MSC to differentiate into diverse types of neurons shows 
that MSC can replace damaged cells not just in the basal 
nuclei and nigrostriatal pathway but also in other parts of 
the parenchyma whose degradation leads to the cognitive 
and behavioural symptoms of PD [134]. However, this is 
not the only advantage of MSCs. In fact, these cells are 
inert in terms of immunogenicity, as their progeny do not 
include immune cells, in contrast to hematopoietic stem 

cells (HSCs), for example. In addition to this, MSCs can 
be safely suppressed when required by immune cells, a 
capability that minimizes their potential hazards to con-
siderable extents. Owing to their lineage, MSCs have also 
been shown to facilitate engraftment of other stem cells, 
indicating that they are quite good housekeepers. This is 
further bolstered by the fact that these cells can be main-
tained for prolonged periods of time in their initial state 
without transformation [135]. Else, MSCs bring about 
salutary alterations in their surrounding environment by 
releasing an extensive secretome including extracellu-
lar vesicles, especially miRNA-containing exosomes that 
participate in intercellular signal transduction, which has 
been found to confer neurorestorative effects in the case 
of ischemic stroke [136]. By secreting these exosomes, 
MSCs facilitate cell proliferation and angiogenesis, while 
repressing apoptosis, all of which are of high therapeutic 
value in degenerative diseases, such as PD [137].

Conclusions
Although stem cells continue to be an invaluable treat-
ment modality for neural regenerative medicine, their 
therapeutic use is limited by the possibility of immune 
reactivity, tumorigenesis, and insufficient differentia-
tion, as well as non-specific targeting and the inability to 
cross physiological and biological barriers. MSC-derived 
exosomes not only have therapeutic characteristics simi-
lar to their parent cells, but they also have the ability to 
avoid whole-cell post-transplant adverse events due to 
their potential to pass physiological barriers, migrate 
and reside in brain lesion sites, have a high safety pro-
file, and no cases of immune response and rejection have 
been reported. Furthermore, exosomes cannot turn into 
pre-malignant cells. In animal models, the exchange 
of genetic material, such as miRNA, via exosomes can 
enhance neurogenesis, reduce neuroinflammation, and 
promote functional recovery. Indeed, miRNAs have 
acquired prominence in the PD research area, not only 
for their role in PD pathogenesis but also as a promising 
window for usage as biomarkers or potential therapeutic 
agents for PD treatment.

Nonetheless, one should not overlook the experimental 
nature of such therapeutic interventions, as the majority 
of clinical trials concerned with MSC therapy, particu-
larly in the case of PD, have had few participants, and the 
results obtained from these initiatives cannot necessar-
ily be generalized to everyday medical care. In addition 
to this, isolation and transplantation of MSCs require 
resource-demanding methods that are usually costly, and 
there is always a risk of failure, even if low, that need to 
be considered.
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teinase inducer; MMP‑9: Matrix metalloproteinase‑9; PBMCs: Peripheral blood 
mononuclear cells.
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